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Abstract – At the four-week Beaverworks Summer 

Institute, high school students were taught the basics of 
autonomous vehicle design and implementation. Students 
learned the basics of control algorithms (specifically bang-
bang and PID control), methods of computer vision in 
identifying colored markers, and basic localization and 
mapping algorithms for obstacle avoidance. The final week 
was spent preparing for a final challenge that forced 
students to implement a complete autonomous system on a 
dynamic race course.  Our team implemented a potential 
field control system with free-space vector overlay and a 
blob detection color system to place 5th overall in the final 
race. 

I. INTRODUCTION 

BEAVERWORKS is a research cooperative 

founded by Lincoln Laboratory and the MIT School of 
Engineering with the purpose of facilitating research 
and innovation[1].  In an effort to expand beyond the 
university classroom, the institute offered its first four-
week intensive study for high school students in the 
field of autonomous vehicle programming and design 
in the summer of 2016.  The program’s curriculum was 
adapted from MIT RACECAR, an optional, four-week 
course offered to university students in-between 
semesters at MIT.  The Beaverworks program taught 
students the fundamentals of autonomous steering 
algorithms, computer vision, and computer planning 
while allowing them to implement their systems on 
miniaturized autonomous vehicles.  Each of these core 
fields was taught during one of the first three weeks; 
students spent the fourth week preparing an 
autonomous system for competition in a final race. 

II. WEEK 1 

The first week was spent familiarizing students with 
ROS (Robot Operating System), a popular control 
system for robotics hardware, and teaching the bang-
bang and PID (Proportional, Integral, Derivative) 

steering control algorithms.  The week culminated in a 
two-lane drag race where students raced their cars 
along a straight wall with only the steering algorithm 
in control. 

A. The RACECAR Platform 
The MIT RACECAR (Rapid Autonomous Complex-

Environment Competing Ackermann-steering Robot) is 
an autonomous vehicle platform designed for student 
learning and development[2].  The platform is based 
upon a 1/10 scale Traxxis RC rally car and sports an 
Nvidia Jetson TX-1 embedded supercomputer with a 4-
core CPU and 256-core GPU (graphics card).  For 
sensors, the car sports a Hokuyo laser range finder 
(LIDAR), Stereolabs ZED camera, and Sparkfun IMU 
(Inertial Measurement Unit).  The car is also able to 
support a Structure.io depth camera, though the depth 
camera was removed for this course (rendered 
redundant, as the stereo camera is capable of 
interpreting depth).  As a control mechanism, the entire 
vehicle was equipped with an open source ESC 
(Electronic Speed Controller) called VESC, which 
doubles as an odometer.  Hardware specifications and 
software components are available publicly through 
github[3].  As an operating system, the Jetson computer 
runs Ubuntu 14. 

!  

!  

Fig. 1-1.  An MIT RACECAR as used in summer 2016.  This 
vehicle does not use the structure.io depth camera and has a router 
mounted directly to the top of the chassis.
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B. ROS 
The RACECAR system is complex, capable of 

simultaneously collecting data from numerous sensors, 
performing computations on that data, and issuing 
speed and steering commands to the VESC.  In order to 
facilitate so many parallel processes, the system is 
controlled by the open-source Robot Operating System 
(ROS).  ROS Indigo, a version of ROS released in July 
of 2014, is used on the RACECAR as it is optimized 
for Ubuntu 14[4].  In order to facilitate data-handling 
from many simultaneous processes, ROS features a 
system of “nodes” that “publish” and “subscribe” to 
various data “topics.”  The terminology is as follows: 

• Nodes are pieces of software, usually written in 
Python or C++, that perform a particular task or 
computation 

• Publishing data is a method of packaging and 
sending information to a data thread.  Nodes publish 
data to topics. 

• Topic is synonymous with data thread 

• Subscribing is a method of reading in data packets 
from a topic.  Nodes subscribe to topics in order to 
read the data published there 

Students spent their first days at Beaverworks 
becoming familiar with ROS by writing simple safety 
nodes that could stop a car if it drove too close to an 
object; LIDAR data was interpreted by a node that 
published distances to the topic “/scan.” The safety 
node (subscribed to the /scan topic) analyzed the data, 
then published a drive command to the topic “/teleop.” 
The drive system (subscribed to /teleop) froze the 
vehicle when the safety node published a speed-zero 
command. Once these safety scripts were written, 
students were ready to start building autonomous 
steering controllers. 

C. Bang Bang Control 
The simplest method of controlling a robot is the 

bang-bang controller[5], a binary steering system which 
operates by abruptly switching between two states[6]. 
As a steering algorithm, the bang bang controller 
attempts to follow a path by switching between 
steering full left and full right when not directly on 
course. During week one, these controllers were used 
to follow a wall. The RACECAR was given a nominal 
distance to stay from the wall (usually ~0.5 meters) 
and used LIDAR data to check that horizontal distance.  
When the LIDAR indicated that the vehicle was too 
close (<0.5m), the car turned full right to compensate.  
When the LIDAR indicated that the vehicle was too far 

(>0.5m), the car turned full left.   

The major advantage of bang-bang is its 
simplicity[7]; there are few lines of code and the 
algorithm is simple, so errors are easy to diagnose and 
debug.  This makes the bang-bang controller a highly 
effective means of achieving a certain degree of 
control. However, there are two major disadvantages 
that render bang-bang dangerous to use.  The first is 
oscillation; being that the algorithm can never drive 
forwards (only left or right), the vehicle follows a sine-
curve-like path whose center line is located at the 
desired distance from the wall.  As a result, the car is 
rarely ever at the desired distance.  The second major 
disadvantage is overcompensation; when the car is 
placed a high distance away from the wall, the 
aggressive steering can cause the car to turn too far to 
be able to react to the wall; by the time the car finally 
passes the 0.5m threshold, it may be facing the wall 
head-on or even facing backwards. In an  even more 
extreme case (where the wall is >1.5m away), the car 
will not ever pass the 0.5m threshold and will drive in 
circles. 

!  

!  
The algorithm our team ended up implementing was 

unable to solve the overcompensation issue, though 
was able to help mitigate the oscillation; if the vehicle 
was within 10cm (0.1m) of the nominal distance, it 
would issue a drive-forwards command, rather than a 
left or right command. In this way, the car spent a fair 
amount of time driving forwards, avoiding a portion of 
the oscillation inherent in a binary system. 

!  

Fig. 1-2.  The path followed by a bang-bang controller attempting 
to center itself on the x axis
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D. P Control 
The second simplest method of controlling a vehicle 

is the proportional controller[5], or P controller[8], so 
named because it outputs a steering command 
proportional to its distance from the desired target.  
This calculation can be performed by the equation 

!  

where the outputted steering angle, θ, is determined 
by the amount of error, e, multiplied by an 
experimentally-derived constant, Kp.  In its simplest 
form, Kp = 1, and so the steering angle is equal to the 
amount of error present (thus completely proportional; 
as error increases, so does the steering angle and vice 
versa).  This approach does not often work, however, 
as the amount of error can be extremely large and so 
creates a disproportionate steering angle to what is 
necessary (i.e. The car is facing 60° off course, so sets 
the steering angle to 60°, and ends up facing 
perpendicularly to the line it means to follow).  

By varying the value of Kp (usually | {0 < Kp < 1}), 
the steering angle can be “tuned” to respond to the 
amount of error in a more useful way (i.e. The car is 
facing 60° off course, so sets it steering angle to 6°, 
allowing it to drift back towards the line).  In this 
workshop, the value was experimentally derived, and 
our team found that a Kp value of 0.1 produced an 
optimum controller.  Other teams’ Kp values varied, 
some as low as 0.01 and others as high as 0.8, 
indicating that hardware plays a large factor in the 
outcome of a controller’s effectiveness. 

The P controller alone, however, often leads to an 
unstable system; A vehicle placed away from the line it 
hopes to follow may approach the line, and then 
overshoot. As it overshoots, the controller realizes that 
the vehicle is (significantly) off course and will turn 
back towards the line with a proportionally significant 
response. This in turn creates an even larger overshoot, 
and the system collapses into increasing oscillations. 

!  
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E. PD Control 
In order to help prevent these oscillations from 

perpetually increasing, a derivative (D) term can be 
added to the proportional (P) term to create a PD 
controller[8] with the equation 

!  

where the outputted steering angle, θ, is determined 
by the P term summed to a D term where Kd is an 
experimentally-derived constant (that differs from Kp) 
multiplied into the derivative of the error at that point, 
ė.  Kd is set | {Kd < 0} so that a resultantly negative D 
term dampens the positive steering angle set by the P 
term; if the amplitude of oscillations is very large, the 
secant (derivative term) between the two time intervals 
is proportionally large. Subtracting this secant term 
from the P term reduces the resultant steering angle.  
Since a derivative is proportional to the amplitude of 
the oscillations it is derived from, the D term 
effectively dampens an unstable P system by reducing 
the resultant steering angle proportionally to the size of 
the instabilities. 

!  

!  
For purposes of programming the vehicle, a secant 

line sufficed for the ė term and was calculated by the 
equation 

Fig. 1-3.  The path followed by a bang-bang controller modified to 
drive straight part of the time.  The oscillation present is due to a 
combination of inherent drift in the car and steering overshoot

Fig. 1-4.  The increasingly oscillating path followed by an 
unstable P controller

Fig. 1-5.  If the amplitude of oscillations is very large, the secant 
between the two time intervals is also very large. Subtracting this 
secant (the horizontal line) from an unstable P controller (the sine 
curve) produces a lower net steering angle, thus dampening the 
effect of oscillations.
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Like with the Kp constant, the Kd constant required 
tuning.  Our team found that a tiny Kd value worked 
well, and used Kd = 0.05 during the week’s challenge. 

F. Determining Distance 
While having effective controllers is important, each 

of these control algorithms rely on obtaining an 
accurate perpendicular distance to the wall. This task is 
not easy because the car is not always oriented parallel 
to the wall.  In the best case scenario, the car is located 
parallel to the wall, such that the point at 90° from the 
front of the car is the accurate position of the wall.  

!  

!  

In the case that the car is oriented away from the 
wall, the distance at 90° will read greater than the 
correct distance, and the car will shift its wheels 
towards the wall.   

!  

!  

This is not inherently a bad thing; in fact, it can 
often help keep the wheels oriented forwards. In the 
case that the car is oriented towards the wall, however, 
this error can cause the vehicle to crash. If the car 
perceives itself to be to far from the wall it will attempt 
to drive towards the wall; if the car is already oriented 
towards the wall when this maneuver occurs, the car 
will crash. 

!  

!  
Solving this problem can occur in two ways, both of 

which our team experimented with during the institute.  
The simplest method is to parse through all the 
laserscan data on the side of the wall and look for the 
shortest distance; the shortest distance from the 
LIDAR scanner to the wall is always the perpendicular.  
This method, while quick and easy, may be prone to 
errors in the LIDAR data (the laser scanner is not 
inherently accurate). 

A more robust solution to the distance problem is to 
read not only the point 90° from the front of the car, 
but also a point 30° off of that point; in that way, the 
car has generated an SAS triangle, a triangle with two 
adjacent sides and the included angle (side-angle-side) 
all known values. 

From here, the law of cosines can be used to 
calculate the third side of the triangle and thereby the 
area.  The equation area = base • height can then be 
used to back-calculate the perpendicular to the car, 
which will always be the height of the resultant 
triangle. 

!  
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Fig. 1-6.  If the car is oriented parallel to the wall, the laserscan at 
90° (perceived distance) is equal to the actual distance, so 
provides an accurate measurement

Fig. 1-7.  If the car is oriented away from the wall, it perceives its 
distance from the wall to be too large and will swerve towards the 
wall.  This maneuver can sometimes be helpful

Fig. 1-8.  If the car is oriented towards from the wall, it may still 
perceive its distance to be too large and will swerve into the wall.

Fig. 1-9.  The algebraic and trigonometric processes by which the 
true distance from the wall to the car can be derived by two points
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Our team implemented the robust (trig) method 
during week 1, but experimented later in the course 
with simply taking the closest point in the range; while 
this second method is theoretically less robust, it has 
not proven to be unreliable for purposes of the 
RACECAR. 

G. Week 1 Challenge 
The challenge ending week 1 was a wall-following 

drag race; a car was placed on an ~1.5 meter wide, 
straight-walled track bounded by ~1/3 meter high 
cardboard fluting.  The car was required first the left 
and then the right wall using LIDAR data and some 
sort of steering controller.  Our team opted to use a PD 
controller with Kp and Kd values of 0.1 and 0.05, 
respectively. The error term was defined as the desired 
distance from the wall minus the actual distance from 
the wall (as determined by the LIDAR).  The desired 
distance our team set was 0.5 meters from the wall. 

 

!

!  

Our team successfully followed both the right and 
left walls without collisions, but when the car was 
placed very far from the right wall, it was unable to 
correct its course in time to avoid colliding with the 
wall; the P controller forced the car very quickly 
towards the wall (being that the car’s initial distance 
was very far from the wall) and ended up overshooting 
the 0.5m target. line  The P controller then realized that 
it had overshot the line and attempted to create a large 
steering angle away from the wall.  We presume that 
our Kd value was too large, as it too effectively 
dampened the steering angle; rather than turning back 
quickly enough, the large derivative prevented the car 
from creating a large net steering angle, and so it ended 
up colliding with the cardboard fluting. 

III. WEEK 2 

The second week was spent teaching students the 
basics of computer vision; they read in images with the 

onboard ZED camera and utilized image processing 
functions built into the Python OpenCV library.  The 
week culminated in a challenge where the RACECAR 
encountered a colored marker, steered towards it 
relying only on vision (no LIDAR), and then, based on 
the marker color, turned a certain way at a T-junction. 

A. OpenCV 
Open Source Computer Vision (OpenCV) is a library 

of image processing functions with interfaces for Java, 
Python, C, and C++.  It was built and optimized in C-
based languages and is designed for computational 
efficiency[9]. 

B. RGB and HSV 
One of the early challenges was to detect a colored 

marker; this is not particularly easy when using the 
standard RGB (Red-Green-Blue) color scheme, as 
varying brightnesses and intensities of light are 
difficult to isolate by nature of the three distinct 
variables. As a result, the image analysis performed by 
our team was executed in the HSV (Hue-Shade-Value) 
color scheme.  In HSV, color in the traditional sense is 
defined on a 360° color wheel independent of 
brightness or color intensity, which are represented as 
value and shade, respectively[10].  In this way, colors 
are easier to isolate in computations; all of yellow can 
be represented by a single range of hue values (45-75) 
and bright shades can be isolated efficiently by simply 
choosing large shade and brightness values. Color 
identification was by far the most difficult part of the 
week for our team, as the HSV values for the colored 
marker targets had to be manually changed and tested 
and any variation in lighting or shadow rev 

!  
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C.Blob Detection 
OpenCV features a variety of “blob detection” 

Fig. 1-10.  Raised cardboard flutes were used to bound both sides 
of the straight track. A tape line down the center marked left and 
right lanes.  The desired distance our team chose from either wall 
was 0.5 m.   Image credit: www.gograph.com

Fig. 2-1.  A 3D representation of the HSV color scheme; colors are 
independently isolated around the hue color wheel, intensity of 
color by saturation and brightness by depth.  
Image credit: www.wikimedia.com

Raised cardboard flutes

Target distance: 0.5 m
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methods; the <SimpleBlobDetector> class has built-in 
functions for identifying and filtering objects in an 
image based upon color, area, circularity, ratio of 
inertia, and convexity[11]. 

The first step in blob detection is to read in an image; 
on the RACECAR, images were provided by the left 
camera of the stereo ZED camera.  In order to detect a 
colored marker, a bitmap was extracted from the 
imported media; the image was first converted from 
RGB to HSV and then had the pixels of a certain HSV 
range isolated in a bitmap.  The SimpleBlobDetector 
functions were utilized on this bitmap to detect objects. 

Being that the colored marker was large (8.5” x 11”), 
we were able to detect the marker by filtering blobs by 
size; the largest blob on screen was assumed to be the 
colored marker (being that there were no objects in the 
room with both a comparable color range and area to 
the markers). 

D.Week 2 Challenge 
The challenge ending week 2 was to navigate a T-

junction, with a colored marker was deployed at the 
center of the T.  This marker signified the direction the 
car should turn in (red for left, green for right). The car 
would then wall-follow along the corresponding path, 
marked by cardboard flutes. 

In order to make the challenge more complex, the 
path towards the marker was not marked and the cars 
were started without directly facing the marker (the 
marker was always in the camera’s field of motion, but 
seldom head-on).  As a result, a method for controlling 
the car towards the colored marker was necessary. 

Furthermore, no LIDAR data was allowed to be 
received until the car entered a region near the colored 
marker, marked on the floor by yellow tape.  Thus, 
approaching, interpreting, detecting the distance of the 
wall, and detecting the color of the marker had to have 
been performed by the camera alone. 

Our team solved this problem by extrapolating 
additional data from the bitmaps extracted from the 
ZED images. Once the marker was isolated, additional 
OpenCV SimpleBlobDetector methods were used to 
identify the center of mass and width of the marker.  
From this information, our team was able to derive the 
center point of the marker, a target point that we could 
use in a steering controller. Recycling code from the 
PD controller, our team used this center point as the 
target, (rather than the distance from a wall), granting 
us the ability to home in on the colored marker. 

Being that the vehicle was only reading in data from 
the left ZED camera (thus having no stereo vision for 
depth), our team resorted to a simple method for 
determining when the car was in the box; since the box 
was located very close to the marker (and the car was 
navigating towards the marker), we reasoned that once 
the marker’s (unique) color filled a certain percentage 
of the camera frame, it would be far enough inside the 
box to be able to enable its LIDAR sensor.  To reduce 
the number of pixels (and colored objects) in the 
frame, our code cropped all camera images to 60% 
height and programmed the car to activate its LIDAR 
scanner when the colored marker filled 11% of the 
resultant frame. 

 !  

!  

Fig. 2-2.  A bird’s eye view of the week 2 challenge course. The 
car was positioned at one of the three starting locations (blue) with 
a field of vision including the colored marker.  The colored marker 
(red or green) denoted which way the car should turn (left or right, 
respectively).  The car had to navigate into the marked box 
(yellow) before activating its LIDAR, after which it would wall 
follow along a curved path marked by the cardboard flutes (black).
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 Our team was extremely successful during the final 
challenge; our approach and LIDAR activation systems 
worked reliably and our car was successfully able to 
start wall-following in both directions. The most 
difficult part, by far, was tuning the PD controller for 
the right-hand track; ~1m from the cardboard fluting 
on the right side was a narrow steel post supporting a 
handrail. This obstacle was not marked on the map and 
did not affect vehicles that hugged the wall during the 
wall-follow; however, due to the steep curvature of the 
wall, following the wall at a sufficiently close distance 
was incredibly difficult. 
 

 Our team eventually overcame these issues and was 
one of only two teams to successfully complete the 
challenge. Video of our team’s successful run can be 
found online: 

https://youtu.be/DUp9yURMo2c 

You will easily notice the instability of the PD 
controller in the shakiness of the video; this instability 
was unfortunate, but was the only way to avoid 
crashing into the steel pole.  We came in second place 
overall, as the first place team had completed a run 
slightly faster than ours had. 

IV. WEEK 3 

The third week was spent teaching students obstacle 
avoidance algorithms and autonomous localization and 
mapping. Students used ROS mapping algorithms to 
develop maps of an enclosed space and implemented 
potential field systems for obstacle avoidance.  The 
week culminated in a blob detection challenge within 
an enclosed space, where cars were given 2 minutes to 
explore an enclosed space, counting as many colored 
markers (of varying colors) as they could. 

A. Localization 
In order to move through an environment effectively, 

an autonomous system should know where it is in the 
environment. Localization is a complex set of tasks 
that attempts to do just that. 

Dead reckoning is a simple method of localization 
that relies on odometry data to estimate the vehicle’s 
current position and orientation[12]; the vehicle defines 
its starting position as the origin in a cartesian 
coordinate system and then tracks its position within 
that system by counting wheel revolutions and their 
corresponding directions. Odometry data, however, is 
often unreliable, especially so with the RACECAR 
hardware; the RACECAR has no odometry sensor, all 
‘odometry’ data comes from estimations made by the 
computer based upon the voltages sent to the motors 
and actuators. 

A more reliable form of localization relies on sensor 
data and a system of landmarks[13]; a sensor (i.e. 
LIDAR scanner or camera) observes its surroundings 
and identifies two distinct points (landmarks) ahead of 
it.  The vehicle then drives forward and checks the  
new position of the landmarks, using the new positions 
relative to the vehicle to calculate its position in the 
environment. The vehicle then chooses two new points 
ahead of it and the process begins again.  

!  

!  

Assuming that the environment is static, this 
localization algorithm is far more reliable than 
odometry as it allows the system to correct for error in 
real time.  In Fig. 3-1, the grey ‘ghost’ images under Xk 
and Xk+1 as well as the red circles around the star 

Fig. 2-3.  This image was taken from the vehicle as it approached 
the colored marker; once the marker filled more than 11% of the 
frame’s volume, the car activated its LIDAR scanner

Fig. 3-1.  An autonomous vehicle (Xk-1) identifies two points 
ahead of it (Zk-1 and Xk-1), moves forward to position Xk, checks 
its position relative to those points (now Xk and Zk) to triangulate 
its current position, then chooses new points ahead of it and begins 
the process again.    Image credit:  www.researchgate.net

https://youtu.be/DUp9yURMo2c
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objects represent inherent error; sensors may be 
imprecise at identifying the locations of objects (red 
circles) and steering/odometry may be imprecise at 
moving the vehicle to a desired point (ghost images) 
relative to those objects. The constant re-checking and 
derivation of position by referencing static objects 
allows the vehicle to verify its position at every 
instance it checks its surroundings. 

B. Mapping 
Suppose an autonomous vehicle is exploring an 

environment, reading in LIDAR data as it goes. It 
would be invaluable to the autonomous system to log 
its environment as it goes such that it knows where it is 
in a global reference frame.  The ROS gmapping 
package provides a set of laser-based mapping 
algorithms that can, in real time, build build and return 
a 2D occupancy grid map similar to a building floor 
plan[14].  This map can be analyzed, in turn, by ROS 
nodes and utilized in robot planning and memory 
algorithms. 

As an autonomous vehicle drives around, it reads 
data into its LIDAR scanner. This data is returned in 
the form of a 1D point cloud listing distances to objects 
in a 270° arc. As the data is read in, the gmapping 
package marks the points detected in a 2D grid map, 
effectively “drawing” detected points in a plane for 
later reference.  The resultant grid map can be analyzed 
by an external ROS node. 

!  

!  

C. SLAM 
Suppose an autonomous vehicle is moving through 

an environment, identifying colored objects that it 
passes by.  Without being able to identify where in the 
world it is, objects could be re-counted as the robot 
passes by them a second time. An effective way to 
overcome this issue is to have the vehicle map the 

environment it is passing through as it goes.  However, 
the robot would be unable to tell if it is in a given spot 
on the map it has drawn without being able to tell 
where it is in reference to the map.  As a result, 
mapping and localization must happen simultaneously. 

This is known as the Simultaneous Localization And 
Mapping (SLAM) problem; as the robot passes 
through a world, it draws a map. Simultaneously, it 
uses the the same points it uses to draw the map to 
localize its position with respect to its surroundings. 
By comparing the points around it with points in the 
map, a vehicle is able to approximate its location in a 
global reference frame[15]. 

D. Object Avoidance 
Once a robot is able to solve the SLAM problem, the 

idea of object avoidance becomes much easier; by 
referencing a map of the environment, a vehicle is able 
to find potential obstacles and then is able to identify 
their positions relative to itself via localization. It can 
then plan paths that do not coincide with these 
obstacles. There are a number of methods for achieving 
SLAM-based object avoidance, but the issue our team 
faced was that they all involved the use of a map.  
Being that we would not receive a map of the 
environment in advance, we set out to design an 
alternate set of algorithms that did not require the use 
of a map. 

E. White-Space Avoidance 
A LIDAR scanner returns a 1D array of numbers, 

each number representing a distance and each position 
in the array representing a point along a 270° arc. An 
easy method of filtering through the data is to parse 
through the array, searching for values that are within 
some distance from the car (i.e. search for all points 
that are <5m from the vehicle).  The results of this 
search can be processed into a bitmap of ones and 
zeros, ones representing the position of objects within 
the threshold distance and zeros representing usable 
white space. 

Fig. 3-2.  A screenshot of the ROS Gazebo visualizer in the 
process of building and reading a map created by the ROS 
gmapping package and a laser scanner.     
Image credit:  www.hackaday.io
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Assume the vehicle in Fig. 12 is reading in data every 
10° from the 180° arc represented by the purple field. 
Also assume that the laserscan has a radius of 5 meters.  
If the object in the frame is only 4 meters away from 
the object, and its searching threshold is 5 meters, it 
might return data in an array such as this: 

[5, 5, 5, 5, 5, 5, 5, 5, 4, 3, 4, 5, 5, 5, 5, 5, 5, 5] 

Where each data point represents the range from the 
laser scanner to the nearest object in its 10° window.  
Being that the obstacle is cylindrical, the scanner, in 
this instance, detects the edges of the obstacle at 
positions 9 and 11, and the center of the object at 
position 10.  After searching for all values <5m away, 
the new bitmap array would look like this: 

[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0] 

Where each 0 represents at least 5m of free space and 
each 1 represents an obstacle. This bitmap can be  
easily visualized by projecting empty space into every 
point where there is a 0 and a bar into every point 
where there is a 1: 

[                               ——                            ] 

This representation of the environment is primitive but 
effective; by simply identifying and moving towards 
the largest section of white space, the car knows where 
no obstacles exist 5m ahead of it. As it moves forward, 
into this white space, it repeats the scanning process to 
identify new obstacles that exist ahead of the new 
position. 

 Our team successfully implemented a prototype of 
this white-space system that worked quite effectively.  
Being that the only PD controller required was to steer 
the car towards the center of the largest section of 
white space, the number of variables that required 

tuning was minimal, and the vehicle was able to move 
through a space with obstacles without collisions. Our 
team did not implement thorough testing, however, 
especially for corner cases, as we soon moved on to 
more sophisticated methods of object avoidance. 

F. Farthest-Vector Avoidance 
An even simpler approach to white-space avoidance 

was proposed to our team by Oktay Arslan[16], a 
specialist in robotics from JPL who gave a set of guest 
lectures to the institute. Utilizing the fact that the 
LIDAR effectively has no maximum range, he 
proposed an algorithm that simply searches for the 
farthest distance away from the vehicle and drives 
toward that point.  Our team toyed with the idea for a 
little while, but were concerned by how easily it might 
be confused; in the final race, without obstacles, the 
algorithm might work reasonably effectively.  
However, the weekly challenge asked for object 
avoidance and featured closely-placed objects, some of 
which had gaps between them; being that the farthest 
vector could potentially lie between the two obstacles, 
but without enough clearance for the vehicle, our team 
did not want to risk the chance of a collision so did not 
implement this approach during week 3. 

G.Potential Field Avoidance 
Gravity is described as projecting a force field, a 

field of gravitational potential.  Similarly, positive and 
negative charges project force fields, fields of electric 
potential. An alternative technique to white-space 
techniques lies in creating a vector space with 
behaviors like that of a potential field. 

! !  

!  

In considering potential fields’ application to object 
avoidance, it is easiest to consider electric potential.  
The electrical force between two charges is calculated 
by Coloumb’s Law[17], given as 

Fig. 3-3.  A screenshot of the ROS Gazebo visualizer simulating 
laserscan data.  Image credit:  www.ros.org

Fig. 3-4.  A planet (left) and an electric charge (right) both create 
large regions of low or high potential in their corresponding fields.   
The moon (red ball) wants to roll towards its planet and charges 
want to move from the high positive region to the low negative 
region.  This property of a potential field can be harnessed for 
object avoidance.    

Image credit:  Greg Egan (left) and UC Davis (right)
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!  

where the resultant electric force between two 
particles (F) is equal to the electric constant (k) times 
the charges of the two particles (Q and q) divided by 
the distance (d) between them squared.  This equation 
is known as an inverse-square law, being that the force 
is inversely proportional to the square of the distance 
between the two particles. This means that as d 
increases linearly, F increases exponentially. 

Consider an autonomous car to be positively charged 
and for each object the LIDAR detects to also be 
positively charged; the car will be repelled from every 
object it detects. The strength by which it is repelled by 
a given object can be determined by Coloumb’s  Law. 
This results in that as the vehicle approaches an 
obstacle, it is exponentially repelled.  In order to get 
the car to move forward, consider a strong, permanent 
positive charge to always exist behind the car.  In this 
way, the car passes through a world, repelled by 
everything, seeking the path of lowest potential. 

This algorithm is surprisingly easy to implement; 
vectors are easy to compute and manipulate in Python, 
especially with NumPy libraries[18]. A 1D array of data 
points is read in by the LIDAR scanner and each point 
is passed through a modified form of Coloumb’s Law, 
given as 

!  

where K is an experimentally-derived, easily tuned 
constant and d is each range value in the scanner array.  
Passing the scanner array through this equation 
produces an array of magnitudes – the “strength” by 
which each point in space “pushes” on the car. 

The angular direction of each magnitude is known by 
its position in the array. As such, simple trigonometry 
gives each of these direction-magnitude vectors a  
corresponding Cartesian x and y magnitude.  Summing 
together all x magnitudes (some of which point left and 
some of which point right) results in a net x value, X.  
Summing together all y magnitudes results in a net Y 
value.   

!  

!  

The car’s speed is thereby represented by Y and its 
steering direction by X. The summation and 
trigonometric processes for the entire calculation of X 
and Y can each be expressed in a single line: 

!  

!  

The resultant X and Y values represent the net force 
with which all objects detected by the LIDAR “push” 
on the car – this results in a net backwards Y force.  To 
compensate, we imagine a huge positive charge located 
behind the positively charged vehicle, a gigantic, 
forward-pointing y-vector.  We simply sum a large, 
positive constant into the Y to create this force.  Since 
a forward-pointing vector has no left/right direction, it 
has no width.  As such, no y-constant needs to be 
summed into the X value. 

H. Week 3 Challenge 
The culminating challenge for week 3 combined  the 

tasks of obstacle avoidance and colored blob detection; 
an oblong arena with two “islands” (shaped vaguely 
like the greek character θ) was filled with various 
wooden boards and posts, with colored markers strewn 
throughout the arena, some taped to walls, others to 
obstacles.  The task was to collect points; +10 points 
for each unique marker detected and catalogued, -2 
points for each collision.  Teams were given 2 minutes 
to explore the arena as thoroughly as possible. 

Our team implemented a potential-field avoidance 

Fig. 3-5.  Summation of vectors; the x and y components of 
vectors a and b, when combined, create a net X and net Y that 
represent the vector a+b.    Image credit:  NASA Glenn
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system (after much struggling with radian-degree 
conversions) with the help of Winter Guerra[19], an 
MIT Associate Instructor. This potential field controller 
was paired with a blob detection system recycled from 
the week 2 challenge. 

Video of our team’s performance at the week 3 
challenge can be found online: 

https://youtu.be/SB-El-a54Pc 

Our team performed highly, scoring third place 
overall with 4 successful detections and 0 collisions.  
Our team would have scored even more highly had our 
car not navigated into an area of low potential. In a T-
intersection, a lack of walls in the X-direction resulted 
in no net turn for the vehicle. A very close distance to 
the wall ahead of the vehicle created a backwards 
repulsion force that equated the ever-present forwards 
vector.  As a result, the vehicle was “pushed” equally 
in all directions and became stuck; a total of 20 
seconds were spent exploring the environment.  The 
remaining 1:40 were spent stuck in the potential well. 

V. WEEK 4 

The fourth week was spent in preparation for the 
final race challenge. Students implemented control, 
decision-making, and obstacle avoidance algorithms as 
they prepared to compete in a situationally and 
strategically complex final race.  Successfully 
implementing <vision system> to toggle between 
potential field and wall follow controllers, our team 
placed <place> in the final race. 

A. Race Format 
The final challenge was deceptively simple; pass 

through a racecourse as quickly as possible.  The race 
comprised of 3 rounds of runs: 

1) Time Trials 

During the time trial portion of the race, teams were 
given three runs to make it through the course as 
quickly as possible.  The average of these three times 
would determine their placement in the heats. 

2) Heats 

Three ranks were formed; the fastest three teams, the 
middle three teams, and the slowest three teams.  In the 
heat, three teams would have their cars lined up 
horizontally across the starting line (fastest car to the  

!

!  

!  

Fig. 4-1, 4-2.  The final racetrack, laid out on the floor of the MIT 
Walker Memorial, Building 50.

https://youtu.be/SB-El-a54Pc
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inside of the track) and raced against the other two 
cars to determine placement in the Grand Prix. 

3) Grand Prix 

All 9 teams had their cars placed into the track at the 
same time; each heat was a row, lined up to form a 3x3 
matrix behind the starting line. The winners of the 
individual heats were placed closest to the inside wall. 
The 3 fastest cars became the final champions. 

B. The Shortcut 
A shortcut would be open for only one of the time 

trials; a colored marker at the corner of the intersection 
would tell the car whether or not the path was open.  
To force competitors to use vision (and not simply rely 
on a wall-follow algorithm or LIDAR scans), a 
barricade was set up on the far end of the shortcut on 
the closed runs (thus, if the car failed to make the turn 
away from the shortcut it would be forced to make an 
extremely tight U-turn). 

C. Obstacle Avoidance 
In the heats and grand prix runs, the RACECAR 

teams were exposed to something they had not yet 
experienced in the course; moving obstacles.  Having 
multiple cars in the same track created obstacles that 
the LIDAR unreliably detected; various points on the 
cars reflected the lasers back at the sensor, registering 
an obstacle, while holes in the vehicle allowed laser 
light to pass through, preventing the sensor from 
detecting an obstacle. This resulted in unpredictable 
behavior for nearly every car’s controller, regardless of 
the algorithm, as both wall-follow and potential field 
controllers rely on accurate measurement of obstacles. 

D. Developing Controls 
The final racetrack was wide, nearly 6 feet across in 

many areas. This allowed a wide range of control 
algorithms to be feasible. Our team toyed with wall-
follow, free-space, and potential field algorithms 
before developing a hybrid free-space/potential field 
system we implemented for the final race. 

The wall-follow algorithm is simple and easy to 
execute. The wide track and lack of obstacles made 
wall-follow particularly appealing to our team, 
especially as it could allow us to closely follow the left 
wall (reducing the total distance our vehicle would 
have to travel).  Following the left wall seemed like a 
good option until considering turns; a left-hand turn 
with a far-left wall-follow algorithm would force the 
vehicle to make a snap change in direction (the LIDAR 
data would read a left wall up until the turn, at which 

point it sees the wall suddenly disappear).  This snap 
change could lead to oscillations in the PID control and 
an inefficient path. 

Our team’s second thought was then to implement a 
right-wall-follow system, following the right wall at a 
great distance (so as to still hug the left wall).  A 
system such as this would allow the car to perceive 
left-hand turns more easily, hugging the greater, slower 
curvature of the right hand wall in order to avoid 
instabilities in the PID controller. 

This system worked relatively well, but since both 
right and left hand turns existed in the racetrack (and 
so at least one snap change issue would exist 
regardless of which wall we followed), our team 
decided to explore other approaches. 

We thought back to Oktay Arslan’s advice in 
implementing a free-space system to pull the car 
simply in whatever direction had the farthest distance.  
Without obstacles in the course, this method would 
have worked well in the straightaways, but again, not 
well with turns; as soon as the LIDAR scanner passes 
into an intersection, the free-space vector would pull it 
with a tremendous amount of force towards the open 
pathway.  Being that the LIDAR is mounted on the 
front of the vehicle, the rear wheels would clip the 
corner of the wall as it attempted to make any turn of 
significant magnitude.  Being that this issue was 
unavoidable, our team sought yet another method of 
control. 

We resurrected our potential field controller; this 
controller had not failed us in avoiding obstacles, so it 
ought not fail us in an open raceway.  Indeed, the car 
drove with impressive stability, centering itself in the 
racetrack almost perfectly, and took shallow turns 
beautifully.  The main issue we faced with the potential 
field system was making sharp turns, especially in the 
intersection with the colored marker.  The potential 
field system is very good at producing stable control 
signals, but tends to make slow, wide turns and 
occasionally gets stuck in regions of low potential in 
intersections.  To combat this issue, our team 
developed a hybrid system. 

The combined free-space/potential field control 
system utilizes the strong, sudden pull vector produced 
by the free-space system on top of the signals produced 
by the robust potential field system.  The RACECAR 
would calculate the resultant vector of the potential 
field and would sum that vector with a scaled free-
space vector.  To this end, the car would drive stably in 
open areas and when approaching a corner, would 
suddenly be jerked in the direction of the turn.  The 
potential field system continued to produce repulsive 
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vectors from the walls, preventing the super-sharp turn 
produced by the vector alone.  When tuned, this system 
was capable of taking sharp turns (<= 90°) at relatively 
high speeds (< 2m/s). 

The system became unstable once the max speed was 
increased from 2m/s to 3m/s, but with slight tuning 
was incredibly successful. 

E. Developing Vision 
Developing vision in the Walker Memorial building 

was difficult for one reason in particular; as the day 
progressed, the sun would move through the sky and 
cast glare through the windows and orange overhangs.  
This resulted in the colored markers having different 
HSV values throughout the day as the light shown off 
of them differently.  If the vision detector was tuned 
too specifically, it would cease to detect the colored 
markers correctly; if it was tuned to pick up a wide 
spectrum of marker-like colors, it would start detecting 
random items in the room.  The constantly-shifting 
color scheme prevented our team from reliably making 
the shortcut decision and turn.  This issue continued to 
haunt us through race day. 

F. Making the Decision 
Once our values were tuned correctly (at least for a 

given time of day), our vehicle perceived green and red 
and acted accordingly (green to drive straight, 
continuing through the shortcut, and red to drive right, 
through the standard circuit).  Making the turn was 
difficult in itself; the free-space vector was not strong 
enough to make such a sharp turn, which required 
more than 90° in direction change.  Once the vision 
system detected a red marker, it would create a huge, 
artificial, right-pulling vector that pulled the car 
rightwards for 1 second.  If the system detected green, 
the potential field system was left active.  Being that 
there is a gap in the wall at the right-turn in the 
intersection, a moderately-strong leftward-pulling 
vector was enacted for 1 second to keep the car moving 
forwards through the intersection. 

G. Challenge Result Summary 
Our racecar placed 8th in the first race and 6th in the 

final; being that our code had been tuned for afternoon 
colors, we had expected an early failure in the 
intersection.  However, with a robust potential-field 
system, our car effectively avoided the other cars 
during the final race. 

H. First Race 
Our vehicle was the second vehicle on the track; the 

vehicle before us failed in the intersection, so we 
expected our code to also fail in the intersection.  
Being that every vehicle after the first two passed the 
intersection correctly, we assume that the lighting 
changed significantly during the course of the races 
and would have expected our code to work effectively 
later in the day. 

Being that our vehicle did not pass the intersection 
correctly, we scored 8th place, having achieved a rapid 
time through the one successful run our vehicle made. 

I. Final Race 
Our vehicle placed 6th overall; with a robust 

potential field field system we effectively avoided the 
other cars as obstacles.  Our vehicle had an early lead 
out of the starting line, dodging most of the other cars, 
but was hit during a turn by another team’s vehicle 
(which we later learned had its safety controller 
deliberately disabled) and was thrown into the wrong 
direction.  After a lengthy recovery, our vehicle turned 
back on course to complete the race in 6th place. 

VI. SOME CONCLUSIONS 

The Beaverworks Institute experience was unlike 
any that currently exists; the education was executed 
beautifully and the people involved were truly 
inspiring.  I, personally, grew a tremendous amount on 
both the social/interpersonal front as well as the 
technical front, and will certainly be leaving MIT to try 
and create a RACECAR experience at my own school. 

A. Technical Conclusions 
Any conclusions drawn from the Beaverworks 

technical design/lecture sessions must culminate with a 
tremendous respect for the complexity of autonomous 
systems currently in testing by Google, Tesla, and 
other commercial enterprises.  LIDAR data did not 
allow even a vehicle as simple as ours to operate 
reliably in a controlled environment, let alone a 
dynamic environment.  The collapse of our vision 
system after lighting changes and our inability to 
effectively calibrate a color detector for any time of 
day further signals a disconnect between what is 
theoretically possible and what is practically possible.  
The complexity of our own systems is dwarfed by the 
complexity of full-scale systems, inspiring a reverence 
for real-world engineering.  Furthermore, being able to 
see the real-world applications of this technology 
through the professors, guest lecturers, and associate 
instructors made the education deep and tangible, 
allowing students to experience the potential of the 
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technology they are developing. 

B. Personal Conclusions 
Attending the Beaverworks program felt like coming 

home; the conversations that sprang up between 
students ranged from complex algorithms to 
philosophy, politics to practicality, in a way that only 
could exist among students with an avid curiosity 
towards the world. Furthermore, the staff and 
professors involved in the program were magnificent, 
treating the students almost like peers, rather than high 
schoolers, and did not hold back on depth of 
information during technical lectures.  Living with 
students from across the country, students with very 
different backgrounds, but whose passion for 
exploration is unmatched, was a truly refreshing 
experience. My “home” community lacks students 
with this passion and makes communication with local 
peers difficult, if not impossible.  

Participating in the Beaverworks program was an 
inspiration for me, personally, as it opened my eyes to 
a world that I did not realize even existed; 
intellectually brilliant and curious students, equally 
explorative professors, and taking a refreshing “drink 
from the firehose” was an unmatched experience and 
has helped re-form my goals as I prepare to apply to 
college. The experience of interacting with other 
students who are like me was novel and wonderful and 
has prepared me to seek out communities like that at 
MIT and has inspired me to try and build one back 
“home.” 

VII. EPILOGUE 

In the weeks since I have returned to La Canada I 
have shared my experiences at Beaverworks with my 
local school district. The technology advisor for the 
district was thrilled with the possibility of having a 
RACECAR vehicle and curriculum at our local high 
school and is offering resources towards purchasing the 
hardware for a vehicle (and will be helping me 
fundraise to purchase multiple vehicles). A math 
teacher with some previous experience in computer 
programming has offered her classroom during a 
weekly homeroom period to host a small class of 
students whom we plan on teaching as much of the 
Beaverworks curriculum as we can.   

I hope to emulate the community of students similar 
that I encountered at Beaverworks to the best of my 
ability; by creating an environment that attracts bright, 
intellectually curious students and gives them the 
resources to thrive, I hope to bring to La Canada a 

small piece of what I experienced at MIT. 

On a more personal note, I have definitively 
developed as an individual from my experiences  at 
Beaverworks.  I have become content as an individual.  
I am looking forward, for the first time, in my life, to 
finding a community of students like me in university.  
I have seen that such a community can exist, and in 
fact thrives in places like MIT.  I have new experiences 
to share and the inspiration and resources to build a 
community that, at least in part, seeks to bring a part of 
MIT’s spirit and ideals to other students like me; 
students who live in despair, never realizing that 
people like them do exist in the world.   

I hope to give these students a place to start looking. 
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