
Beaverworks RACECAR, Summer 2016 !1

‑
Abstract – At the four-week Beaverworks Summer

Institute, high school students were taught the basics of
autonomous vehicle design and implementation. Students
learned the basics of control algorithms (specifically bang-
bang and PID control), methods of computer vision in
identifying colored markers, and basic localization and
mapping algorithms for obstacle avoidance. The final week
was spent preparing for a final challenge that forced
students to implement a complete autonomous system on a
dynamic race course. Our team implemented a potential
field control system with free-space vector overlay and a
blob detection color system to place 5th overall in the final
race.

I. INTRODUCTION

BEAVERWORKS is a research cooperative

founded by Lincoln Laboratory and the MIT School of
Engineering with the purpose of facilitating research
and innovation[1]. In an effort to expand beyond the
university classroom, the institute offered its first four-
week intensive study for high school students in the
field of autonomous vehicle programming and design
in the summer of 2016. The program’s curriculum was
adapted from MIT RACECAR, an optional, four-week
course offered to university students in-between
semesters at MIT. The Beaverworks program taught
students the fundamentals of autonomous steering
algorithms, computer vision, and computer planning
while allowing them to implement their systems on
miniaturized autonomous vehicles. Each of these core
fields was taught during one of the first three weeks;
students spent the fourth week preparing an
autonomous system for competition in a final race.

II. WEEK 1

The first week was spent familiarizing students with
ROS (Robot Operating System), a popular control
system for robotics hardware, and teaching the bang-
bang and PID (Proportional, Integral, Derivative)

steering control algorithms. The week culminated in a
two-lane drag race where students raced their cars
along a straight wall with only the steering algorithm
in control.

A. The RACECAR Platform
The MIT RACECAR (Rapid Autonomous Complex-

Environment Competing Ackermann-steering Robot) is
an autonomous vehicle platform designed for student
learning and development[2]. The platform is based
upon a 1/10 scale Traxxis RC rally car and sports an
Nvidia Jetson TX-1 embedded supercomputer with a 4-
core CPU and 256-core GPU (graphics card). For
sensors, the car sports a Hokuyo laser range finder
(LIDAR), Stereolabs ZED camera, and Sparkfun IMU
(Inertial Measurement Unit). The car is also able to
support a Structure.io depth camera, though the depth
camera was removed for this course (rendered
redundant, as the stereo camera is capable of
interpreting depth). As a control mechanism, the entire
vehicle was equipped with an open source ESC
(Electronic Speed Controller) called VESC, which
doubles as an odometer. Hardware specifications and
software components are available publicly through
github[3]. As an operating system, the Jetson computer
runs Ubuntu 14.

!

!

Fig. 1-1. An MIT RACECAR as used in summer 2016. This
vehicle does not use the structure.io depth camera and has a router
mounted directly to the top of the chassis.

August 2016. This work was facilitated by Beaverworks, an associate institution of Lincoln Laboratories and the Massachusetts Institute of
Technology’s School of Engineering.

Braden Oh, Author, is a rising senior at La Cañada High School, CA USA (e-mail: braden.oh@ icloud.com). As of August 2016, he is with
MIT KitCube, a team based out of the MIT AeroAstro Department, Cambridge, MA USA and is in the process of applying to college.

Development and Implementation of Autonomous RACECAR Systems

Oh, Braden, Author. Data Architect, Team 4

Beaverworks RACECAR, Summer 2016 !2

B. ROS
The RACECAR system is complex, capable of

simultaneously collecting data from numerous sensors,
performing computations on that data, and issuing
speed and steering commands to the VESC. In order to
facilitate so many parallel processes, the system is
controlled by the open-source Robot Operating System
(ROS). ROS Indigo, a version of ROS released in July
of 2014, is used on the RACECAR as it is optimized
for Ubuntu 14[4]. In order to facilitate data-handling
from many simultaneous processes, ROS features a
system of “nodes” that “publish” and “subscribe” to
various data “topics.” The terminology is as follows:

• Nodes are pieces of software, usually written in
Python or C++, that perform a particular task or
computation

• Publishing data is a method of packaging and
sending information to a data thread. Nodes publish
data to topics.

• Topic is synonymous with data thread

• Subscribing is a method of reading in data packets
from a topic. Nodes subscribe to topics in order to
read the data published there

Students spent their first days at Beaverworks
becoming familiar with ROS by writing simple safety
nodes that could stop a car if it drove too close to an
object; LIDAR data was interpreted by a node that
published distances to the topic “/scan.” The safety
node (subscribed to the /scan topic) analyzed the data,
then published a drive command to the topic “/teleop.”
The drive system (subscribed to /teleop) froze the
vehicle when the safety node published a speed-zero
command. Once these safety scripts were written,
students were ready to start building autonomous
steering controllers.

C. Bang Bang Control
The simplest method of controlling a robot is the

bang-bang controller[5], a binary steering system which
operates by abruptly switching between two states[6].
As a steering algorithm, the bang bang controller
attempts to follow a path by switching between
steering full left and full right when not directly on
course. During week one, these controllers were used
to follow a wall. The RACECAR was given a nominal
distance to stay from the wall (usually ~0.5 meters)
and used LIDAR data to check that horizontal distance.
When the LIDAR indicated that the vehicle was too
close (<0.5m), the car turned full right to compensate.
When the LIDAR indicated that the vehicle was too far

(>0.5m), the car turned full left.

The major advantage of bang-bang is its
simplicity[7]; there are few lines of code and the
algorithm is simple, so errors are easy to diagnose and
debug. This makes the bang-bang controller a highly
effective means of achieving a certain degree of
control. However, there are two major disadvantages
that render bang-bang dangerous to use. The first is
oscillation; being that the algorithm can never drive
forwards (only left or right), the vehicle follows a sine-
curve-like path whose center line is located at the
desired distance from the wall. As a result, the car is
rarely ever at the desired distance. The second major
disadvantage is overcompensation; when the car is
placed a high distance away from the wall, the
aggressive steering can cause the car to turn too far to
be able to react to the wall; by the time the car finally
passes the 0.5m threshold, it may be facing the wall
head-on or even facing backwards. In an even more
extreme case (where the wall is >1.5m away), the car
will not ever pass the 0.5m threshold and will drive in
circles.

!

!
The algorithm our team ended up implementing was

unable to solve the overcompensation issue, though
was able to help mitigate the oscillation; if the vehicle
was within 10cm (0.1m) of the nominal distance, it
would issue a drive-forwards command, rather than a
left or right command. In this way, the car spent a fair
amount of time driving forwards, avoiding a portion of
the oscillation inherent in a binary system.

!

Fig. 1-2. The path followed by a bang-bang controller attempting
to center itself on the x axis

Beaverworks RACECAR, Summer 2016 !3

!

D. P Control
The second simplest method of controlling a vehicle

is the proportional controller[5], or P controller[8], so
named because it outputs a steering command
proportional to its distance from the desired target.
This calculation can be performed by the equation

!

where the outputted steering angle, θ, is determined
by the amount of error, e, multiplied by an
experimentally-derived constant, Kp. In its simplest
form, Kp = 1, and so the steering angle is equal to the
amount of error present (thus completely proportional;
as error increases, so does the steering angle and vice
versa). This approach does not often work, however,
as the amount of error can be extremely large and so
creates a disproportionate steering angle to what is
necessary (i.e. The car is facing 60° off course, so sets
the steering angle to 60°, and ends up facing
perpendicularly to the line it means to follow).

By varying the value of Kp (usually | {0 < Kp < 1}),
the steering angle can be “tuned” to respond to the
amount of error in a more useful way (i.e. The car is
facing 60° off course, so sets it steering angle to 6°,
allowing it to drift back towards the line). In this
workshop, the value was experimentally derived, and
our team found that a Kp value of 0.1 produced an
optimum controller. Other teams’ Kp values varied,
some as low as 0.01 and others as high as 0.8,
indicating that hardware plays a large factor in the
outcome of a controller’s effectiveness.

The P controller alone, however, often leads to an
unstable system; A vehicle placed away from the line it
hopes to follow may approach the line, and then
overshoot. As it overshoots, the controller realizes that
the vehicle is (significantly) off course and will turn
back towards the line with a proportionally significant
response. This in turn creates an even larger overshoot,
and the system collapses into increasing oscillations.

!

!

E. PD Control
In order to help prevent these oscillations from

perpetually increasing, a derivative (D) term can be
added to the proportional (P) term to create a PD
controller[8] with the equation

!

where the outputted steering angle, θ, is determined
by the P term summed to a D term where Kd is an
experimentally-derived constant (that differs from Kp)
multiplied into the derivative of the error at that point,
ė. Kd is set | {Kd < 0} so that a resultantly negative D
term dampens the positive steering angle set by the P
term; if the amplitude of oscillations is very large, the
secant (derivative term) between the two time intervals
is proportionally large. Subtracting this secant term
from the P term reduces the resultant steering angle.
Since a derivative is proportional to the amplitude of
the oscillations it is derived from, the D term
effectively dampens an unstable P system by reducing
the resultant steering angle proportionally to the size of
the instabilities.

!

!
For purposes of programming the vehicle, a secant

line sufficed for the ė term and was calculated by the
equation

Fig. 1-3. The path followed by a bang-bang controller modified to
drive straight part of the time. The oscillation present is due to a
combination of inherent drift in the car and steering overshoot

Fig. 1-4. The increasingly oscillating path followed by an
unstable P controller

Fig. 1-5. If the amplitude of oscillations is very large, the secant
between the two time intervals is also very large. Subtracting this
secant (the horizontal line) from an unstable P controller (the sine
curve) produces a lower net steering angle, thus dampening the
effect of oscillations.

Beaverworks RACECAR, Summer 2016 !4

!

Like with the Kp constant, the Kd constant required
tuning. Our team found that a tiny Kd value worked
well, and used Kd = 0.05 during the week’s challenge.

F. Determining Distance
While having effective controllers is important, each

of these control algorithms rely on obtaining an
accurate perpendicular distance to the wall. This task is
not easy because the car is not always oriented parallel
to the wall. In the best case scenario, the car is located
parallel to the wall, such that the point at 90° from the
front of the car is the accurate position of the wall.

!

!

In the case that the car is oriented away from the
wall, the distance at 90° will read greater than the
correct distance, and the car will shift its wheels
towards the wall.

!

!

This is not inherently a bad thing; in fact, it can
often help keep the wheels oriented forwards. In the
case that the car is oriented towards the wall, however,
this error can cause the vehicle to crash. If the car
perceives itself to be to far from the wall it will attempt
to drive towards the wall; if the car is already oriented
towards the wall when this maneuver occurs, the car
will crash.

!

!
Solving this problem can occur in two ways, both of

which our team experimented with during the institute.
The simplest method is to parse through all the
laserscan data on the side of the wall and look for the
shortest distance; the shortest distance from the
LIDAR scanner to the wall is always the perpendicular.
This method, while quick and easy, may be prone to
errors in the LIDAR data (the laser scanner is not
inherently accurate).

A more robust solution to the distance problem is to
read not only the point 90° from the front of the car,
but also a point 30° off of that point; in that way, the
car has generated an SAS triangle, a triangle with two
adjacent sides and the included angle (side-angle-side)
all known values.

From here, the law of cosines can be used to
calculate the third side of the triangle and thereby the
area. The equation area = base • height can then be
used to back-calculate the perpendicular to the car,
which will always be the height of the resultant
triangle.

!

!

Fig. 1-6. If the car is oriented parallel to the wall, the laserscan at
90° (perceived distance) is equal to the actual distance, so
provides an accurate measurement

Fig. 1-7. If the car is oriented away from the wall, it perceives its
distance from the wall to be too large and will swerve towards the
wall. This maneuver can sometimes be helpful

Fig. 1-8. If the car is oriented towards from the wall, it may still
perceive its distance to be too large and will swerve into the wall.

Fig. 1-9. The algebraic and trigonometric processes by which the
true distance from the wall to the car can be derived by two points

Beaverworks RACECAR, Summer 2016 !5

Our team implemented the robust (trig) method
during week 1, but experimented later in the course
with simply taking the closest point in the range; while
this second method is theoretically less robust, it has
not proven to be unreliable for purposes of the
RACECAR.

G. Week 1 Challenge
The challenge ending week 1 was a wall-following

drag race; a car was placed on an ~1.5 meter wide,
straight-walled track bounded by ~1/3 meter high
cardboard fluting. The car was required first the left
and then the right wall using LIDAR data and some
sort of steering controller. Our team opted to use a PD
controller with Kp and Kd values of 0.1 and 0.05,
respectively. The error term was defined as the desired
distance from the wall minus the actual distance from
the wall (as determined by the LIDAR). The desired
distance our team set was 0.5 meters from the wall.

!

!

Our team successfully followed both the right and
left walls without collisions, but when the car was
placed very far from the right wall, it was unable to
correct its course in time to avoid colliding with the
wall; the P controller forced the car very quickly
towards the wall (being that the car’s initial distance
was very far from the wall) and ended up overshooting
the 0.5m target. line The P controller then realized that
it had overshot the line and attempted to create a large
steering angle away from the wall. We presume that
our Kd value was too large, as it too effectively
dampened the steering angle; rather than turning back
quickly enough, the large derivative prevented the car
from creating a large net steering angle, and so it ended
up colliding with the cardboard fluting.

III. WEEK 2

The second week was spent teaching students the
basics of computer vision; they read in images with the

onboard ZED camera and utilized image processing
functions built into the Python OpenCV library. The
week culminated in a challenge where the RACECAR
encountered a colored marker, steered towards it
relying only on vision (no LIDAR), and then, based on
the marker color, turned a certain way at a T-junction.

A. OpenCV
Open Source Computer Vision (OpenCV) is a library

of image processing functions with interfaces for Java,
Python, C, and C++. It was built and optimized in C-
based languages and is designed for computational
efficiency[9].

B. RGB and HSV
One of the early challenges was to detect a colored

marker; this is not particularly easy when using the
standard RGB (Red-Green-Blue) color scheme, as
varying brightnesses and intensities of light are
difficult to isolate by nature of the three distinct
variables. As a result, the image analysis performed by
our team was executed in the HSV (Hue-Shade-Value)
color scheme. In HSV, color in the traditional sense is
defined on a 360° color wheel independent of
brightness or color intensity, which are represented as
value and shade, respectively[10]. In this way, colors
are easier to isolate in computations; all of yellow can
be represented by a single range of hue values (45-75)
and bright shades can be isolated efficiently by simply
choosing large shade and brightness values. Color
identification was by far the most difficult part of the
week for our team, as the HSV values for the colored
marker targets had to be manually changed and tested
and any variation in lighting or shadow rev

!

!

C.Blob Detection
OpenCV features a variety of “blob detection”

Fig. 1-10. Raised cardboard flutes were used to bound both sides
of the straight track. A tape line down the center marked left and
right lanes. The desired distance our team chose from either wall
was 0.5 m. Image credit: www.gograph.com

Fig. 2-1. A 3D representation of the HSV color scheme; colors are
independently isolated around the hue color wheel, intensity of
color by saturation and brightness by depth.
Image credit: www.wikimedia.com

Raised cardboard flutes

Target distance: 0.5 m

Beaverworks RACECAR, Summer 2016 !6

methods; the <SimpleBlobDetector> class has built-in
functions for identifying and filtering objects in an
image based upon color, area, circularity, ratio of
inertia, and convexity[11].

The first step in blob detection is to read in an image;
on the RACECAR, images were provided by the left
camera of the stereo ZED camera. In order to detect a
colored marker, a bitmap was extracted from the
imported media; the image was first converted from
RGB to HSV and then had the pixels of a certain HSV
range isolated in a bitmap. The SimpleBlobDetector
functions were utilized on this bitmap to detect objects.

Being that the colored marker was large (8.5” x 11”),
we were able to detect the marker by filtering blobs by
size; the largest blob on screen was assumed to be the
colored marker (being that there were no objects in the
room with both a comparable color range and area to
the markers).

D.Week 2 Challenge
The challenge ending week 2 was to navigate a T-

junction, with a colored marker was deployed at the
center of the T. This marker signified the direction the
car should turn in (red for left, green for right). The car
would then wall-follow along the corresponding path,
marked by cardboard flutes.

In order to make the challenge more complex, the
path towards the marker was not marked and the cars
were started without directly facing the marker (the
marker was always in the camera’s field of motion, but
seldom head-on). As a result, a method for controlling
the car towards the colored marker was necessary.

Furthermore, no LIDAR data was allowed to be
received until the car entered a region near the colored
marker, marked on the floor by yellow tape. Thus,
approaching, interpreting, detecting the distance of the
wall, and detecting the color of the marker had to have
been performed by the camera alone.

Our team solved this problem by extrapolating
additional data from the bitmaps extracted from the
ZED images. Once the marker was isolated, additional
OpenCV SimpleBlobDetector methods were used to
identify the center of mass and width of the marker.
From this information, our team was able to derive the
center point of the marker, a target point that we could
use in a steering controller. Recycling code from the
PD controller, our team used this center point as the
target, (rather than the distance from a wall), granting
us the ability to home in on the colored marker.

Being that the vehicle was only reading in data from
the left ZED camera (thus having no stereo vision for
depth), our team resorted to a simple method for
determining when the car was in the box; since the box
was located very close to the marker (and the car was
navigating towards the marker), we reasoned that once
the marker’s (unique) color filled a certain percentage
of the camera frame, it would be far enough inside the
box to be able to enable its LIDAR sensor. To reduce
the number of pixels (and colored objects) in the
frame, our code cropped all camera images to 60%
height and programmed the car to activate its LIDAR
scanner when the colored marker filled 11% of the
resultant frame.

 !

!

Fig. 2-2. A bird’s eye view of the week 2 challenge course. The
car was positioned at one of the three starting locations (blue) with
a field of vision including the colored marker. The colored marker
(red or green) denoted which way the car should turn (left or right,
respectively). The car had to navigate into the marked box
(yellow) before activating its LIDAR, after which it would wall
follow along a curved path marked by the cardboard flutes (black).

Beaverworks RACECAR, Summer 2016 !7

!

!
 Our team was extremely successful during the final
challenge; our approach and LIDAR activation systems
worked reliably and our car was successfully able to
start wall-following in both directions. The most
difficult part, by far, was tuning the PD controller for
the right-hand track; ~1m from the cardboard fluting
on the right side was a narrow steel post supporting a
handrail. This obstacle was not marked on the map and
did not affect vehicles that hugged the wall during the
wall-follow; however, due to the steep curvature of the
wall, following the wall at a sufficiently close distance
was incredibly difficult.
 

 Our team eventually overcame these issues and was
one of only two teams to successfully complete the
challenge. Video of our team’s successful run can be
found online:

https://youtu.be/DUp9yURMo2c

You will easily notice the instability of the PD
controller in the shakiness of the video; this instability
was unfortunate, but was the only way to avoid
crashing into the steel pole. We came in second place
overall, as the first place team had completed a run
slightly faster than ours had.

IV. WEEK 3

The third week was spent teaching students obstacle
avoidance algorithms and autonomous localization and
mapping. Students used ROS mapping algorithms to
develop maps of an enclosed space and implemented
potential field systems for obstacle avoidance. The
week culminated in a blob detection challenge within
an enclosed space, where cars were given 2 minutes to
explore an enclosed space, counting as many colored
markers (of varying colors) as they could.

A. Localization
In order to move through an environment effectively,

an autonomous system should know where it is in the
environment. Localization is a complex set of tasks
that attempts to do just that.

Dead reckoning is a simple method of localization
that relies on odometry data to estimate the vehicle’s
current position and orientation[12]; the vehicle defines
its starting position as the origin in a cartesian
coordinate system and then tracks its position within
that system by counting wheel revolutions and their
corresponding directions. Odometry data, however, is
often unreliable, especially so with the RACECAR
hardware; the RACECAR has no odometry sensor, all
‘odometry’ data comes from estimations made by the
computer based upon the voltages sent to the motors
and actuators.

A more reliable form of localization relies on sensor
data and a system of landmarks[13]; a sensor (i.e.
LIDAR scanner or camera) observes its surroundings
and identifies two distinct points (landmarks) ahead of
it. The vehicle then drives forward and checks the
new position of the landmarks, using the new positions
relative to the vehicle to calculate its position in the
environment. The vehicle then chooses two new points
ahead of it and the process begins again.

!

!

Assuming that the environment is static, this
localization algorithm is far more reliable than
odometry as it allows the system to correct for error in
real time. In Fig. 3-1, the grey ‘ghost’ images under Xk
and Xk+1 as well as the red circles around the star

Fig. 2-3. This image was taken from the vehicle as it approached
the colored marker; once the marker filled more than 11% of the
frame’s volume, the car activated its LIDAR scanner

Fig. 3-1. An autonomous vehicle (Xk-1) identifies two points
ahead of it (Zk-1 and Xk-1), moves forward to position Xk, checks
its position relative to those points (now Xk and Zk) to triangulate
its current position, then chooses new points ahead of it and begins
the process again. Image credit: www.researchgate.net

https://youtu.be/DUp9yURMo2c

Beaverworks RACECAR, Summer 2016 !8

objects represent inherent error; sensors may be
imprecise at identifying the locations of objects (red
circles) and steering/odometry may be imprecise at
moving the vehicle to a desired point (ghost images)
relative to those objects. The constant re-checking and
derivation of position by referencing static objects
allows the vehicle to verify its position at every
instance it checks its surroundings.

B. Mapping
Suppose an autonomous vehicle is exploring an

environment, reading in LIDAR data as it goes. It
would be invaluable to the autonomous system to log
its environment as it goes such that it knows where it is
in a global reference frame. The ROS gmapping
package provides a set of laser-based mapping
algorithms that can, in real time, build build and return
a 2D occupancy grid map similar to a building floor
plan[14]. This map can be analyzed, in turn, by ROS
nodes and utilized in robot planning and memory
algorithms.

As an autonomous vehicle drives around, it reads
data into its LIDAR scanner. This data is returned in
the form of a 1D point cloud listing distances to objects
in a 270° arc. As the data is read in, the gmapping
package marks the points detected in a 2D grid map,
effectively “drawing” detected points in a plane for
later reference. The resultant grid map can be analyzed
by an external ROS node.

!

!

C. SLAM
Suppose an autonomous vehicle is moving through

an environment, identifying colored objects that it
passes by. Without being able to identify where in the
world it is, objects could be re-counted as the robot
passes by them a second time. An effective way to
overcome this issue is to have the vehicle map the

environment it is passing through as it goes. However,
the robot would be unable to tell if it is in a given spot
on the map it has drawn without being able to tell
where it is in reference to the map. As a result,
mapping and localization must happen simultaneously.

This is known as the Simultaneous Localization And
Mapping (SLAM) problem; as the robot passes
through a world, it draws a map. Simultaneously, it
uses the the same points it uses to draw the map to
localize its position with respect to its surroundings.
By comparing the points around it with points in the
map, a vehicle is able to approximate its location in a
global reference frame[15].

D. Object Avoidance
Once a robot is able to solve the SLAM problem, the

idea of object avoidance becomes much easier; by
referencing a map of the environment, a vehicle is able
to find potential obstacles and then is able to identify
their positions relative to itself via localization. It can
then plan paths that do not coincide with these
obstacles. There are a number of methods for achieving
SLAM-based object avoidance, but the issue our team
faced was that they all involved the use of a map.
Being that we would not receive a map of the
environment in advance, we set out to design an
alternate set of algorithms that did not require the use
of a map.

E. White-Space Avoidance
A LIDAR scanner returns a 1D array of numbers,

each number representing a distance and each position
in the array representing a point along a 270° arc. An
easy method of filtering through the data is to parse
through the array, searching for values that are within
some distance from the car (i.e. search for all points
that are <5m from the vehicle). The results of this
search can be processed into a bitmap of ones and
zeros, ones representing the position of objects within
the threshold distance and zeros representing usable
white space.

Fig. 3-2. A screenshot of the ROS Gazebo visualizer in the
process of building and reading a map created by the ROS
gmapping package and a laser scanner.
Image credit: www.hackaday.io

Beaverworks RACECAR, Summer 2016 !9

!

!

Assume the vehicle in Fig. 12 is reading in data every
10° from the 180° arc represented by the purple field.
Also assume that the laserscan has a radius of 5 meters.
If the object in the frame is only 4 meters away from
the object, and its searching threshold is 5 meters, it
might return data in an array such as this:

[5, 5, 5, 5, 5, 5, 5, 5, 4, 3, 4, 5, 5, 5, 5, 5, 5, 5]

Where each data point represents the range from the
laser scanner to the nearest object in its 10° window.
Being that the obstacle is cylindrical, the scanner, in
this instance, detects the edges of the obstacle at
positions 9 and 11, and the center of the object at
position 10. After searching for all values <5m away,
the new bitmap array would look like this:

[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]

Where each 0 represents at least 5m of free space and
each 1 represents an obstacle. This bitmap can be
easily visualized by projecting empty space into every
point where there is a 0 and a bar into every point
where there is a 1:

[——]

This representation of the environment is primitive but
effective; by simply identifying and moving towards
the largest section of white space, the car knows where
no obstacles exist 5m ahead of it. As it moves forward,
into this white space, it repeats the scanning process to
identify new obstacles that exist ahead of the new
position.

 Our team successfully implemented a prototype of
this white-space system that worked quite effectively.
Being that the only PD controller required was to steer
the car towards the center of the largest section of
white space, the number of variables that required

tuning was minimal, and the vehicle was able to move
through a space with obstacles without collisions. Our
team did not implement thorough testing, however,
especially for corner cases, as we soon moved on to
more sophisticated methods of object avoidance.

F. Farthest-Vector Avoidance
An even simpler approach to white-space avoidance

was proposed to our team by Oktay Arslan[16], a
specialist in robotics from JPL who gave a set of guest
lectures to the institute. Utilizing the fact that the
LIDAR effectively has no maximum range, he
proposed an algorithm that simply searches for the
farthest distance away from the vehicle and drives
toward that point. Our team toyed with the idea for a
little while, but were concerned by how easily it might
be confused; in the final race, without obstacles, the
algorithm might work reasonably effectively.
However, the weekly challenge asked for object
avoidance and featured closely-placed objects, some of
which had gaps between them; being that the farthest
vector could potentially lie between the two obstacles,
but without enough clearance for the vehicle, our team
did not want to risk the chance of a collision so did not
implement this approach during week 3.

G.Potential Field Avoidance
Gravity is described as projecting a force field, a

field of gravitational potential. Similarly, positive and
negative charges project force fields, fields of electric
potential. An alternative technique to white-space
techniques lies in creating a vector space with
behaviors like that of a potential field.

! !

!

In considering potential fields’ application to object
avoidance, it is easiest to consider electric potential.
The electrical force between two charges is calculated
by Coloumb’s Law[17], given as

Fig. 3-3. A screenshot of the ROS Gazebo visualizer simulating
laserscan data. Image credit: www.ros.org

Fig. 3-4. A planet (left) and an electric charge (right) both create
large regions of low or high potential in their corresponding fields.
The moon (red ball) wants to roll towards its planet and charges
want to move from the high positive region to the low negative
region. This property of a potential field can be harnessed for
object avoidance.

Image credit: Greg Egan (left) and UC Davis (right)

Beaverworks RACECAR, Summer 2016 !10

!

where the resultant electric force between two
particles (F) is equal to the electric constant (k) times
the charges of the two particles (Q and q) divided by
the distance (d) between them squared. This equation
is known as an inverse-square law, being that the force
is inversely proportional to the square of the distance
between the two particles. This means that as d
increases linearly, F increases exponentially.

Consider an autonomous car to be positively charged
and for each object the LIDAR detects to also be
positively charged; the car will be repelled from every
object it detects. The strength by which it is repelled by
a given object can be determined by Coloumb’s Law.
This results in that as the vehicle approaches an
obstacle, it is exponentially repelled. In order to get
the car to move forward, consider a strong, permanent
positive charge to always exist behind the car. In this
way, the car passes through a world, repelled by
everything, seeking the path of lowest potential.

This algorithm is surprisingly easy to implement;
vectors are easy to compute and manipulate in Python,
especially with NumPy libraries[18]. A 1D array of data
points is read in by the LIDAR scanner and each point
is passed through a modified form of Coloumb’s Law,
given as

!

where K is an experimentally-derived, easily tuned
constant and d is each range value in the scanner array.
Passing the scanner array through this equation
produces an array of magnitudes – the “strength” by
which each point in space “pushes” on the car.

The angular direction of each magnitude is known by
its position in the array. As such, simple trigonometry
gives each of these direction-magnitude vectors a
corresponding Cartesian x and y magnitude. Summing
together all x magnitudes (some of which point left and
some of which point right) results in a net x value, X.
Summing together all y magnitudes results in a net Y
value.

!

!

The car’s speed is thereby represented by Y and its
steering direction by X. The summation and
trigonometric processes for the entire calculation of X
and Y can each be expressed in a single line:

!

!

The resultant X and Y values represent the net force
with which all objects detected by the LIDAR “push”
on the car – this results in a net backwards Y force. To
compensate, we imagine a huge positive charge located
behind the positively charged vehicle, a gigantic,
forward-pointing y-vector. We simply sum a large,
positive constant into the Y to create this force. Since
a forward-pointing vector has no left/right direction, it
has no width. As such, no y-constant needs to be
summed into the X value.

H. Week 3 Challenge
The culminating challenge for week 3 combined the

tasks of obstacle avoidance and colored blob detection;
an oblong arena with two “islands” (shaped vaguely
like the greek character θ) was filled with various
wooden boards and posts, with colored markers strewn
throughout the arena, some taped to walls, others to
obstacles. The task was to collect points; +10 points
for each unique marker detected and catalogued, -2
points for each collision. Teams were given 2 minutes
to explore the arena as thoroughly as possible.

Our team implemented a potential-field avoidance

Fig. 3-5. Summation of vectors; the x and y components of
vectors a and b, when combined, create a net X and net Y that
represent the vector a+b. Image credit: NASA Glenn

Beaverworks RACECAR, Summer 2016 !11

system (after much struggling with radian-degree
conversions) with the help of Winter Guerra[19], an
MIT Associate Instructor. This potential field controller
was paired with a blob detection system recycled from
the week 2 challenge.

Video of our team’s performance at the week 3
challenge can be found online:

https://youtu.be/SB-El-a54Pc

Our team performed highly, scoring third place
overall with 4 successful detections and 0 collisions.
Our team would have scored even more highly had our
car not navigated into an area of low potential. In a T-
intersection, a lack of walls in the X-direction resulted
in no net turn for the vehicle. A very close distance to
the wall ahead of the vehicle created a backwards
repulsion force that equated the ever-present forwards
vector. As a result, the vehicle was “pushed” equally
in all directions and became stuck; a total of 20
seconds were spent exploring the environment. The
remaining 1:40 were spent stuck in the potential well.

V. WEEK 4

The fourth week was spent in preparation for the
final race challenge. Students implemented control,
decision-making, and obstacle avoidance algorithms as
they prepared to compete in a situationally and
strategically complex final race. Successfully
implementing <vision system> to toggle between
potential field and wall follow controllers, our team
placed <place> in the final race.

A. Race Format
The final challenge was deceptively simple; pass

through a racecourse as quickly as possible. The race
comprised of 3 rounds of runs:

1) Time Trials

During the time trial portion of the race, teams were
given three runs to make it through the course as
quickly as possible. The average of these three times
would determine their placement in the heats.

2) Heats

Three ranks were formed; the fastest three teams, the
middle three teams, and the slowest three teams. In the
heat, three teams would have their cars lined up
horizontally across the starting line (fastest car to the

!

!

!

Fig. 4-1, 4-2. The final racetrack, laid out on the floor of the MIT
Walker Memorial, Building 50.

https://youtu.be/SB-El-a54Pc

Beaverworks RACECAR, Summer 2016 !12

inside of the track) and raced against the other two
cars to determine placement in the Grand Prix.

3) Grand Prix

All 9 teams had their cars placed into the track at the
same time; each heat was a row, lined up to form a 3x3
matrix behind the starting line. The winners of the
individual heats were placed closest to the inside wall.
The 3 fastest cars became the final champions.

B. The Shortcut
A shortcut would be open for only one of the time

trials; a colored marker at the corner of the intersection
would tell the car whether or not the path was open.
To force competitors to use vision (and not simply rely
on a wall-follow algorithm or LIDAR scans), a
barricade was set up on the far end of the shortcut on
the closed runs (thus, if the car failed to make the turn
away from the shortcut it would be forced to make an
extremely tight U-turn).

C. Obstacle Avoidance
In the heats and grand prix runs, the RACECAR

teams were exposed to something they had not yet
experienced in the course; moving obstacles. Having
multiple cars in the same track created obstacles that
the LIDAR unreliably detected; various points on the
cars reflected the lasers back at the sensor, registering
an obstacle, while holes in the vehicle allowed laser
light to pass through, preventing the sensor from
detecting an obstacle. This resulted in unpredictable
behavior for nearly every car’s controller, regardless of
the algorithm, as both wall-follow and potential field
controllers rely on accurate measurement of obstacles.

D. Developing Controls
The final racetrack was wide, nearly 6 feet across in

many areas. This allowed a wide range of control
algorithms to be feasible. Our team toyed with wall-
follow, free-space, and potential field algorithms
before developing a hybrid free-space/potential field
system we implemented for the final race.

The wall-follow algorithm is simple and easy to
execute. The wide track and lack of obstacles made
wall-follow particularly appealing to our team,
especially as it could allow us to closely follow the left
wall (reducing the total distance our vehicle would
have to travel). Following the left wall seemed like a
good option until considering turns; a left-hand turn
with a far-left wall-follow algorithm would force the
vehicle to make a snap change in direction (the LIDAR
data would read a left wall up until the turn, at which

point it sees the wall suddenly disappear). This snap
change could lead to oscillations in the PID control and
an inefficient path.

Our team’s second thought was then to implement a
right-wall-follow system, following the right wall at a
great distance (so as to still hug the left wall). A
system such as this would allow the car to perceive
left-hand turns more easily, hugging the greater, slower
curvature of the right hand wall in order to avoid
instabilities in the PID controller.

This system worked relatively well, but since both
right and left hand turns existed in the racetrack (and
so at least one snap change issue would exist
regardless of which wall we followed), our team
decided to explore other approaches.

We thought back to Oktay Arslan’s advice in
implementing a free-space system to pull the car
simply in whatever direction had the farthest distance.
Without obstacles in the course, this method would
have worked well in the straightaways, but again, not
well with turns; as soon as the LIDAR scanner passes
into an intersection, the free-space vector would pull it
with a tremendous amount of force towards the open
pathway. Being that the LIDAR is mounted on the
front of the vehicle, the rear wheels would clip the
corner of the wall as it attempted to make any turn of
significant magnitude. Being that this issue was
unavoidable, our team sought yet another method of
control.

We resurrected our potential field controller; this
controller had not failed us in avoiding obstacles, so it
ought not fail us in an open raceway. Indeed, the car
drove with impressive stability, centering itself in the
racetrack almost perfectly, and took shallow turns
beautifully. The main issue we faced with the potential
field system was making sharp turns, especially in the
intersection with the colored marker. The potential
field system is very good at producing stable control
signals, but tends to make slow, wide turns and
occasionally gets stuck in regions of low potential in
intersections. To combat this issue, our team
developed a hybrid system.

The combined free-space/potential field control
system utilizes the strong, sudden pull vector produced
by the free-space system on top of the signals produced
by the robust potential field system. The RACECAR
would calculate the resultant vector of the potential
field and would sum that vector with a scaled free-
space vector. To this end, the car would drive stably in
open areas and when approaching a corner, would
suddenly be jerked in the direction of the turn. The
potential field system continued to produce repulsive

Beaverworks RACECAR, Summer 2016 !13

vectors from the walls, preventing the super-sharp turn
produced by the vector alone. When tuned, this system
was capable of taking sharp turns (<= 90°) at relatively
high speeds (< 2m/s).

The system became unstable once the max speed was
increased from 2m/s to 3m/s, but with slight tuning
was incredibly successful.

E. Developing Vision
Developing vision in the Walker Memorial building

was difficult for one reason in particular; as the day
progressed, the sun would move through the sky and
cast glare through the windows and orange overhangs.
This resulted in the colored markers having different
HSV values throughout the day as the light shown off
of them differently. If the vision detector was tuned
too specifically, it would cease to detect the colored
markers correctly; if it was tuned to pick up a wide
spectrum of marker-like colors, it would start detecting
random items in the room. The constantly-shifting
color scheme prevented our team from reliably making
the shortcut decision and turn. This issue continued to
haunt us through race day.

F. Making the Decision
Once our values were tuned correctly (at least for a

given time of day), our vehicle perceived green and red
and acted accordingly (green to drive straight,
continuing through the shortcut, and red to drive right,
through the standard circuit). Making the turn was
difficult in itself; the free-space vector was not strong
enough to make such a sharp turn, which required
more than 90° in direction change. Once the vision
system detected a red marker, it would create a huge,
artificial, right-pulling vector that pulled the car
rightwards for 1 second. If the system detected green,
the potential field system was left active. Being that
there is a gap in the wall at the right-turn in the
intersection, a moderately-strong leftward-pulling
vector was enacted for 1 second to keep the car moving
forwards through the intersection.

G. Challenge Result Summary
Our racecar placed 8th in the first race and 6th in the

final; being that our code had been tuned for afternoon
colors, we had expected an early failure in the
intersection. However, with a robust potential-field
system, our car effectively avoided the other cars
during the final race.

H. First Race
Our vehicle was the second vehicle on the track; the

vehicle before us failed in the intersection, so we
expected our code to also fail in the intersection.
Being that every vehicle after the first two passed the
intersection correctly, we assume that the lighting
changed significantly during the course of the races
and would have expected our code to work effectively
later in the day.

Being that our vehicle did not pass the intersection
correctly, we scored 8th place, having achieved a rapid
time through the one successful run our vehicle made.

I. Final Race
Our vehicle placed 6th overall; with a robust

potential field field system we effectively avoided the
other cars as obstacles. Our vehicle had an early lead
out of the starting line, dodging most of the other cars,
but was hit during a turn by another team’s vehicle
(which we later learned had its safety controller
deliberately disabled) and was thrown into the wrong
direction. After a lengthy recovery, our vehicle turned
back on course to complete the race in 6th place.

VI. SOME CONCLUSIONS

The Beaverworks Institute experience was unlike
any that currently exists; the education was executed
beautifully and the people involved were truly
inspiring. I, personally, grew a tremendous amount on
both the social/interpersonal front as well as the
technical front, and will certainly be leaving MIT to try
and create a RACECAR experience at my own school.

A. Technical Conclusions
Any conclusions drawn from the Beaverworks

technical design/lecture sessions must culminate with a
tremendous respect for the complexity of autonomous
systems currently in testing by Google, Tesla, and
other commercial enterprises. LIDAR data did not
allow even a vehicle as simple as ours to operate
reliably in a controlled environment, let alone a
dynamic environment. The collapse of our vision
system after lighting changes and our inability to
effectively calibrate a color detector for any time of
day further signals a disconnect between what is
theoretically possible and what is practically possible.
The complexity of our own systems is dwarfed by the
complexity of full-scale systems, inspiring a reverence
for real-world engineering. Furthermore, being able to
see the real-world applications of this technology
through the professors, guest lecturers, and associate
instructors made the education deep and tangible,
allowing students to experience the potential of the

Beaverworks RACECAR, Summer 2016 !14

technology they are developing.

B. Personal Conclusions
Attending the Beaverworks program felt like coming

home; the conversations that sprang up between
students ranged from complex algorithms to
philosophy, politics to practicality, in a way that only
could exist among students with an avid curiosity
towards the world. Furthermore, the staff and
professors involved in the program were magnificent,
treating the students almost like peers, rather than high
schoolers, and did not hold back on depth of
information during technical lectures. Living with
students from across the country, students with very
different backgrounds, but whose passion for
exploration is unmatched, was a truly refreshing
experience. My “home” community lacks students
with this passion and makes communication with local
peers difficult, if not impossible.

Participating in the Beaverworks program was an
inspiration for me, personally, as it opened my eyes to
a world that I did not realize even existed;
intellectually brilliant and curious students, equally
explorative professors, and taking a refreshing “drink
from the firehose” was an unmatched experience and
has helped re-form my goals as I prepare to apply to
college. The experience of interacting with other
students who are like me was novel and wonderful and
has prepared me to seek out communities like that at
MIT and has inspired me to try and build one back
“home.”

VII. EPILOGUE

In the weeks since I have returned to La Canada I
have shared my experiences at Beaverworks with my
local school district. The technology advisor for the
district was thrilled with the possibility of having a
RACECAR vehicle and curriculum at our local high
school and is offering resources towards purchasing the
hardware for a vehicle (and will be helping me
fundraise to purchase multiple vehicles). A math
teacher with some previous experience in computer
programming has offered her classroom during a
weekly homeroom period to host a small class of
students whom we plan on teaching as much of the
Beaverworks curriculum as we can.

I hope to emulate the community of students similar
that I encountered at Beaverworks to the best of my
ability; by creating an environment that attracts bright,
intellectually curious students and gives them the
resources to thrive, I hope to bring to La Canada a

small piece of what I experienced at MIT.

On a more personal note, I have definitively
developed as an individual from my experiences at
Beaverworks. I have become content as an individual.
I am looking forward, for the first time, in my life, to
finding a community of students like me in university.
I have seen that such a community can exist, and in
fact thrives in places like MIT. I have new experiences
to share and the inspiration and resources to build a
community that, at least in part, seeks to bring a part of
MIT’s spirit and ideals to other students like me;
students who live in despair, never realizing that
people like them do exist in the world.

I hope to give these students a place to start looking.

REFERENCES
1. “MIT Lincoln Laboratory Beaver Works Center.” MIT Lincoln

Laboratory, www.ll.mit.edu/news/beaverworkscollabs.html.
2. “RACECAR A Powerful Platform for Robotics Research and

Teaching.” RACECAR A Powerful Platform for Robotics
Research and Teaching, Massachusetts Institute of Technology,
fast.scripts.mit.edu/racecar/hardware/.

3. “RACECAR Hardware.” MIT RACECAR Github, Github,
github.com/mit-racecar/hardware.

4. “ROS Indigo Igloo.” ROS Wiki, ROS.org, wiki.ros.org/indigo.
5. Edelberg, Kyle. “Introduction to Control Systems.” MIT

35-225, July 2016, Cambridge, Massachusetts. Lecture.
6. “Bang-bang control.” Wikipedia, en.wikipedia.org/wiki/Bang–

bang_control
7. Liberzon, Daniel, and Stephan Trenn. The bang-bang funnel

controller: time delays and case study. Coordinated Science
Laboratory, U Illinois.

8. “PID for Dummies.” Control Solutions Minnesota,
www.csimn.com/CSI_pages/PIDforDummies.html.

9. “OpenCV.” Open Source Computer Vision, opencv.org.
10. Georgieva, Lidiya, et al. RGB and HSV colour models in

colour identification of digital traumas images.
11. “SimpleBlobDetector Class Reference.” OpenCV, Open Source

Compu te r Vi s ion , docs .opencv.o rg / t runk /d0 /d7a /
classcv_1_1SimpleBlobDetector.html#gsc.tab=0.

12. Karman, Sertac. “Localization and Mapping: Dead
Reckoning.” MIT 33-116, Cambridge, Massachusetts. Lecture.

13. Callmer, Jonas. Autonomous Localization in Unknown
Environments. Linköpings Universitet.

14. “gmapping.” ROS Wiki, ROS.org, wiki.ros.org/gmapping.
15. Durrant-Whyte, Hugh, and Tim Bailey. Simultaneous

Localisation and Mapping (SLAM): Part I The Essential
Algorithms. Berkeley, U of California Berkeley.

16. Arslan, Oktay. Interview. July 2016.
17. “Coulomb’s Law.” Farside, U of Texas, U of Texas,

farside.ph.utexas.edu/teaching/em/lectures/node28.html.
18. “Numpy.” NumPy, Scipy.org, www.numpy.org.
19. Guerra, Winter. Interview. July 2016.

http://www.ll.mit.edu/news/beaverworkscollabs.html
http://fast.scripts.mit.edu/racecar/hardware/
http://github.com/mit-racecar/hardware
http://wiki.ros.org/indigo
http://www.csimn.com/CSI_pages/PIDforDummies.html
http://opencv.org
http://docs.opencv.org/trunk/d0/d7a/classcv_1_1SimpleBlobDetector.html#gsc.tab=0
http://wiki.ros.org/gmapping
http://farside.ph.utexas.edu/teaching/em/lectures/node28.html
http://www.numpy.org

