
QEA II Module 2: Robolympics

Braden Oh, Kyle Bertram

1 Athlete Demographics

The first challenge that we decided to complete was the ”Rocky Stand Still!” challenge, in which
the Rocky robot is challenged to stand upright for as long as possible while remaining within a 2ft
x 2ft square box marked on the floor. A rough control algorithm that allows the Rocky robot to
stand is given in the following series of steps:

1. Compute the error between the desired and actual angles of the robot

2. Calculate a velocity necessary to correct the error

3. Compute the error between the desired and actual velocities of the robot

4. Calculate a motor PWM signal that compensates for the velocity error

5. Measure the actual motor velocity achieved by a given PWM signal

6. Measure the final angle of the robot

7. Integrate the distance traveled as the robot drifts

8. Adjust the desired angle of the robot backwards to compensate for drift and repeat

Implicit in this series of steps are a set of controllers and transfer functions that can be organized
into a block diagram as shown in Figure 1.

Figure 1: Detailed system block diagram showing transfer function expressions
in the s-domain. Explanations of the blocks and transfer functions are given
below.

A brief definition of the variables used in the Figure 1 block diagram are given in the following
table. Full explanations are given further below the table.

1

Term Description

Kp Proportional term weight for PI angle controller

KI Integral term weight for PI angle controller

Jp Proportional term weight for PI velocity controller

JI Integral term weight for PI velocity controller

a Experimentally determined motor parameter

b Experimentally determined motor parameter

QI Weight for velocity integrator (net distance)

l Length from axle to robot center of mass

g Gravitational acceleration

θdes Desired robot angle value

θout Actual (measured) robot angle value

vdes Desired robot velocity

PWM PWM signal sent to control motor speed

vact Actual (measured) wheel velocity

As shown in Figure 1, a given desired angle (usually zero radians, which is standing upright),
θdes, is fed into the system. Steps 1 and 8 are completed together by computing the angle error
term, eθ, which is given by the expression

eθ = θdes − θout +
QI
s
vout

where the angle error given by the difference between the actual and desired angles is added to
a proportion of the total distance traveled (integral of vout) to yield some final desired angle, eθ.
Step 2 is accomplished by passing this actual desired angle through a PI angle controller, denoted
by the block GAC . This PI controller has values Kp and KI for the proportional and integral term
coefficients, respectively, and outputs a desired velocity, vdes.

Step 3 is completed by simply subtracting the actual velocity of the robot from the desired
velocity and step 4 is completed by passing that difference through a PI motor controller, denoted
by the block GMC . This PI controller has values Jp and JI for the proportional and integral term
coefficients, respectively, and outputs a PWM signal, PWM .

An implicit block appears between steps 4 and 5, acknowledging that the PWM signal sent to
one of Rocky’s motors does not result in an instantaneous velocity change, but rather an actual
velocity determined by an s-domain function of the form ab

s+a , where a and b are experimentally

derived constants unique to the motor. We used provided constant values a = 14 and b = 1
400 . To

this end, a PWM signal passed into a motor behaving according to this function, GM , will result
in an actual velocity output, vact that can be measured directly as a derivative of encoder data.

Another implicit block appears between steps 5 and 6, acknowledging that Rocky’s final angle
is a function of its actual velocity. This final angle is determined by an s-domain function of the
form −s

ls2−g , where l is the ”effective length” of the inverted pendulum, the distance between the
axis of rotation and the center of mass of the pendulum, and g is acceleration due to gravity. Our
Rocky’s value is l = 9.42cm, as it has 100g of mass at the top of the pendulum. To this end, a
velocity applied by the motors on a Rocky robot according to this function, GR, will result in an

2

actual final angle, θout, that can be measured directly via a gyroscope.

Step 7 is completed by integrating the actual velocity of the system, vact, by passing it through
an s-domain function of the form 1

s and then multiplying this integral by a scale factor, QI . Step
8 is achieved as this weighted velocity integral is saved and used in the calculation for the actual
desired angle on the next pass through the control loop (step 1 for the next pass through the control
loop).

A net transfer function for this system could be calculated at this point, but a simplification
can be made first; the dotted region in Figure 1 is a subsystem used for ”cruise control”, and can
be treated as a single block with a single transfer function. A block diagram for this subsystem is
shown in Figure 2.

Figure 2: Block diagram of the motor/motor-controller subsystem showing fre-
quency response equations in the s-domain.

The overall flow function for this subsystem block is given by the expression:

vact = (vdes − vact)GMCGM

From here the transfer function for the subsystem, Gb can be derived:

Gb =
vact
vdes

=
GMCGM

1 +GMCGM

This entire cruise control subsystem can then be replaced in the overall block diagram by a
single block of transfer function Gb which takes in a desired velocity, vdes, and outputs an actual
velocity, vact. This simplified block diagram is given in Figure 3.

Figure 3: Simplified system block diagram with Gb replacing the transfer func-
tion for the motor/motor-controller subsystem. This diagram also includes
frequency response equations in the s-domain.

This simplified block diagram is easier to find the overall transfer function for. To do this, we
begin by taking the overall flow function for the system, which is given by the expression,

3

θout = eθGACGbGR

where

eθ = θdesired +
QI
s
vout − θout

which yields the flow function,

θout = (θdesired +
QI
s
vout − θout)GACGbGR

which can be re-arranged into the transfer function

θout
θin

=
GACGbGR

1 +GACGbGR −GACGb
Qi
s

The s-domain equations for each block are re-iterated in the following table:

Term Block Name Variable Representation

Angle Controller GAC Kp + KI
s

Motor Controller GMC Jp + JI
s

Motor GM
ab
s+a

Robot GR
−s

ls2−g
Motor Subsystem Gb

GMCGM
1+GMCGM

Substituting these expressions in for the G terms of the transfer function θout
θin

yields a fraction
whose denominator can be analyzed to determine the poles of the system. An overview of this
analysis is given in the next section, ”Athlete Performance Information.”

2 Athlete Performance Information

Once we had the transfer function relating θout
θin

, we determined the values KI , Kp, JI , Jp and QI ,
that are used in the control blocks. The values that are used to control the behaviour of Rocky
are:

Variable Value Description

KI -88 Proportional term weight for PI angle controller

Kp -100 Integral term weight for PI angle controller

JI 70 Proportional term weight for PI velocity controller

Jp 8 Integral term weight for PI velocity controller

QI -.3 Weight for velocity integrator (net distance)

Constants calculated based on our model of Rocky are:

Constant Value Description

a 14 Experimentally determined motor parameter

b 1/400 Experimentally determined motor parameter

l .0942 Effective length of Rocky(distance between axle and COM)

g 9.8 Gravity

4

The first step in determining these parameters was to determine the parameters for the cruise
control subsystem, Gb. Since Gb is pair of blocks with one input and one output, the poles of the
transfer function of this subsystem are independent of the rest of the system. Therefore we can
analyze this subsystem independently, and derive an equation with two roots and then solve for a
relationship between the two unknowns, JI and Jp. The transfer function for Gb, with all functions
subbed in is:

Vact
Vdes

=
ab(JI + Jps)

s2 + (a+ abJp)s+ abJI

The denominator of this equation can be used to find the poles of this transfer function, which can
tell us a lot about the behavior of this system, such as whether it is stable or unstable, and what
type of damping the system has. The roots of the denominator are:

s =
−a− abJp ±

√
(a+ abJp)2 − 4abJI

2

Now we know that the system is critically damped when it has two identical, real roots. These
conditions are met when the discriminant is zero, thus

0 = (a+ abJp)
2 − 4abJI

4abJI = (a+ abJp)
2

JI =
(a+ abJp)

2

4ab

This gives us a relationship between JI and Jp that lead to a critically damped system. With
this relationship between JI and Jp, JI can be set to an arbitrary value with a respective Jp, leaving
us with an overall transfer function that has only three unknowns.

To determine the remaining unknowns, we repeated this process of seeking poles by solving for
the roots of the denominator but this time of the overall transfer function, θout

θdes
. This is achieved

by substituting the known G equations into the overall transfer function derived in section 1,

θout
θin

=
GACGbGR

1 +GACGbGR −GACGb
Qi
s

When solving for the zeroes of the denominator of this expression, we are left with six distinct
roots, and so algebraically solving for a critically damped system is extremely impractical. To find
values that were both stable and close to being critically damped, we implemented iterative testing
in both Mathematica and onboard Rocky itself.

The first step in this process was to use our predetermined JI and Jp and make logical guesses
for KI , Kp, and QI to get numerical values for the poles. Once we had this initial ballpark estimate,
we continually adjusted those values until we reached a state of all negative poles, which is a known
property of a stable system.

Once we had a full set of J/K values, we implemented them into Rocky and observed the actual
performance of the robot. If we were sufficiently close to a stable system, we tuned the values to
improve performance, all while checking that the poles remained stable using Mathematica. As
you can see in Figure 4, all of the poles are negative, leaving us with a stable system.

5

Figure 4: This is a graph of the poles used to make Rocky
stand still.

3 Training Session Description

As explained at the end of section 2, Rocky’s training sessions consisted of iterative guess-and-
check using a combination of quantitative analysis in Mathematica and qualitative analysis made
by observing the actual behavior of the Rocky robot system.

Once we had a robot that would stand up, we then moved to implement a velocity controller,
to reduce the runaway found in the robot. This can be observed in our velocity control block in
Figure 1. With the velocity controller in place, Rocky would now stay upright, but would drift
significantly over time. To fix this issue we implemented the position control term, as can also be
seen in Figure 1. At this point we had all of the mathematics and Arduino implementation to have
Rocky complete the survivor challenge, however we got stuck in trying to tune Rocky to actually
follow this control algorithm, and not violently oscillate out of control.

To determine the optimal set of values for our robot, we began with a set of values that we
knew were stable in Mathematica,and implemented those values on the robot, and then observed
how the robot reacted to disturbances and how quickly it came to a (relatively) stable balancing
position, or how quickly it failed, if it didn’t become stable. By solving for the J values in advance,
the state space was reduced to three unknown variables, Kp, KI , and QI . Given only these three
control variables, the behavior of the robot’s failure mode was fairly easy to classify into adjusting
one of those variables:

6

1. Increase Kp: the robot fails to react quickly enough to a widening angle

2. Decrease Kp: the robot is ”jerky” and responds too aggressively to a widening angle

3. Increase KI : the robot badly overshoots a stable position

4. Decrease KI : the robot attempts to respond to a widening angle but too sluggishly

5. Increase QI : The robot is running away

6. Decrease QI : The robot prioritizes staying in one position more than balancing

We would feed in an initial set of values that were stable in Mathematica and then incrementally
change each parameter based on the rules above, logging each set of changes that we made in an
Excel spreadsheet to track how the parameters changed over time. An excerpt of one of these
spreadsheets is given in Figure ??.

Figure 5: An excerpt from one of our variable tuning tables. An initial set
of parameters known to be stable in Mathematica is shown in row 1. Each
subsequent row shows how the values evolve as a response to undesirable robot
behavior (and continued to evolve well beyond what this image shows).

This method of trial-and-error incrimination resulted in a remarkably robust control system
that could last for a fairly long time (¿3 mins) without drifting significantly from its initial posi-
tion. This feat met the requirements of a professor-prescribed challenge dubbed ”Survivor,” and so
Survivor is the first Olympic event our Rocky competes in. Video of Rocky achieving this 3 minute
target is available online here.

An interesting attribute of our rather unique control parameters is that our system can recover
from remarkably large disturbances from the outside (e.g. throwing a post-it pad at Rocky, kicking
it gently, etc.). We have dubbed this ”Trial by Ordeal” and present it as its own independent
category with video available here.

A further interesting side effect of having a large QI value is that Rocky strongly wants to
return to its initial position, even when it is pulled out to some initial displacement; to this end,
Rocky behaves much like a damped spring-mass system, gradually returning to ”equilibrium” (its
starting position) with damped oscillations after being released from some initial displacement from
that ”equilibrium position.” We have dubbed this ”Physics Simulation” and present it as its own
independent category with video available here.

Furthermore, by having such a robust system, we were able to make significant physical alter-
ations to Rocky (i.e. attaching a phone and torch), allowing Rocky to carry the Olympic torch

7

https://youtu.be/h9IDyMmbMLY
https://youtu.be/tuEIzmrPyhE
https://youtu.be/tuEIzmrPyhE?t=53

while streaming John Williams’ famed Olympic March. We have dubbed this ”Carrying the Torch”
and present it as its own independent category with video available here.

With the survivor challenge under our belt we then moved on to attempt the sprint. Our algo-
rithm for attempting the sprint was to measure Rocky’s current position (from its initial position),
increment a desired position variable to some displacement (e.g. 2cm), and then adjust Rocky’s
desired angle as a proportion of how far it is away from the new desired position. This is achieved
with the help of a new magnitude-of-displacement coefficient, md, implemented by the expression

θdes = md(ddesired − dtraveled)

where ddesired is the (accumulating) global desired distance for the robot, dtraveled is the (ac-
cumulating) total distance traveled by the robot, and md is a proportional coefficient with an
experimentally derived value of 0.005.

When Rocky reaches the desired distance, ddesired = dtraveled, and so the desired angle equals
zero. When the on-board computer detects that this desired distance is zero, it increments Rocky’s
ddesired term and the cycle repeats.

This algorithm seems to work fairly well, but due to something strange in our implementation,
the robot consistently fails at almost exactly 4 seconds of operation. Changing threshold values
and parameters fails to mitigate the problem, and the serial data being offloaded by the robot
does not have any glaring anomalies in it, so the issue remains mysterious. Professor Jeff Dusek
observed the error being consistent for nearly an hour and eventually recommended that we submit
our algorithm and implementation as-is in a separate Olympic category of ”The 4-second Flop.”
We accepted this suggestion and present video of this performance online here.

4 Results Time Discussion

In summary, we have an algorithm that completes the ”Rocky Stand Still!” challenge, as well as
the individual categories of ”Trial by Ordeal” and ”Carrying the Torch”, which demonstrate the
robustness of our algorithm. We also have another self created event called, ”The 4-second Flop”,
in which all of the mathematics and controls theoretically necessary to complete the full Sprint
were developed, but after absurdly copious amounts of time of spent testing values, Rocky is still
hindered at 4 seconds by what we presume is an implementation error. We decided to stop after
reaching a point at which we deemed that we were no longer learning a proportional amount of
useful information for the amount of time poured into the project. This decision was validated by
Professor Jeff Dusek.

A Appendix A

A.1 Standing (Survior) Code

1 // This code should help you get started with your balancing robot.

2 // The code performs the following steps

3 // Calibration phase:

4 // In this phase the robot should be stationary lying on the ground.

8

https://youtu.be/tuEIzmrPyhE?t=87
https://youtu.be/tuEIzmrPyhE?t=173

5 // The code will record the gyro data for a couple of seconds to zero

6 // out any gyro drift.

7 //

8 // The robot has a hardcoded angle offset between the lying down and the

9 // standing up configuration. This offset can be modified in Balance.cpp around the lines below:

10 //

11 // // this is based on coarse measurement of what I think the angle would be resting on the flat surface.

12 // // this corresponds to 94.8 degrees

13 // angle = 94827-6000;

14 //

15 // Waiting phase:

16 // The robot will now start to integrate the gyro over time to estimate

17 // the angle. Once the angle gets within +/- 3 degrees of vertical,

18 // we transition into the armed phase. A buzzer will sound to indicate

19 // this transition.

20 //

21 // Armed phase:

22 // The robot is ready to go, however, it will not start executing its control

23 // loop until the angle leaves the region of [-3 degrees, 3 degrees]. This

24 // allows you to let go of your robot, and it won’t start moving until it’s started

25 // to fall just a little bit. Once it leaves the region around vertical, it enters

26 // the controlled phase.

27 //

28 // Controlled phase:

29 // Here you can implement your control logic to do your balancing (or any of the

30 // other Olympic events.

31

32

33 #include <Balboa32U4.h>

34 #include <Wire.h>

35 #include <LSM6.h>

36 #include "Balance.h"

37

38 #define METERS_PER_CLICK 3.141592*80.0*(1/1000.0)/12.0/(162.5)

39 #define MOTOR_MAX 300

40 #define MAX_SPEED 0.75 // m/s

41 #define FORTY_FIVE_DEGREES_IN_RADIANS 0.78

42

43 extern int32_t angle_accum;

44 extern int32_t speedLeft;

45 extern int32_t driveLeft;

46 extern int32_t distanceRight;

47 extern int32_t speedRight;

48 extern int32_t distanceLeft;

49 extern int32_t distanceRight;

50

51 float vL, vR, totalDistanceLeft, totalDistanceRight;

52 float leftMotorPWM = 0;

53 float rightMotorPWM = 0;

54

55 void balanceDoDriveTicks();

56

57 extern int32_t displacement;

58 int32_t prev_displacement=0;

59

60 LSM6 imu;

61 Balboa32U4Motors motors;

62 Balboa32U4Encoders encoders;

63 Balboa32U4Buzzer buzzer;

9

64 Balboa32U4ButtonA buttonA;

65

66 // Instantiate values for all terms that we want to accumulate over

67 // time (i.e. collect the integrals of)

68 float fLaccum = 0.0;

69 float fRaccum = 0.0;

70 float eLaccum = 0.0;

71 float eRaccum = 0.0;

72 float vLoutaccum = 0.0;

73 float vRoutaccum = 0.0;

74

75 // Instantiate our control parameters

76 float ki = -88; // Integral angle controller

77 float kp = -100; // Differential angle controller

78 float ji = 70; // Integral velocity controller

79 float jp = 8; // Differential velocity controller

80 float qi = -.3; // Integral of velocity (position)

81 float theta_des = 0; // Desired angle (default to zero)

82

83 void updatePWMs(float totalDistanceLeft, float totalDistanceRight, float vL, float vR, float angleRad, float angleRadAccum, float dt) {

84

85 // Calculate angle error in terms of theta_des, angleRad, and the average of the total distances

86 float eL = theta_des-angleRad+(qi*(totalDistanceLeft+totalDistanceRight)/2);

87 // Calculate the desired velocity for the left wheel

88 float vtargetL = kp*eL+ki*eLaccum;

89 // Calculate the error between desired and actual velocities

90 float fL = vtargetL-vL;

91

92 // Repeat the aforementioned steps for the right wheel

93 float eR = eL;//theta_des-angleRad+(qi*(totalDistanceLeft+totalDistanceRight)/2);

94 float vtargetR = kp*eR+ki*eRaccum;

95 float fR = vtargetR-vR;

96

97 // Add to the integrals of all terms we want to accumulate over time by adding the

98 // value of each term times the duration of the current time step

99 fLaccum += fL*dt;

100 eLaccum += eL*dt;

101 vLoutaccum += vL*dt;

102 fRaccum += fR*dt;

103 eRaccum += eR*dt;

104 vRoutaccum += vR*dt;

105

106 // Calculate the final PWM values for each wheel

107 leftMotorPWM = jp*fL+ji*fLaccum;

108 rightMotorPWM = jp*fR+ji*fRaccum;

109 }

110

111 uint32_t prev_time;

112

113 void setup()

114 {

115 Wire.begin();

116

117 Serial.begin(9600);

118 Serial1.begin(9600);

119

120 prev_time = 0;

121 ledYellow(0);

122 ledRed(1);

10

123 balanceSetup();

124 ledRed(0);

125 ledGreen(0);

126 ledYellow(0);

127 }

128

129 extern int16_t angle_prev;

130 int16_t start_flag = 0;

131 int16_t armed_flag = 0;

132 int16_t start_counter = 0;

133 void lyingDown();

134 extern bool isBalancingStatus;

135 extern bool balanceUpdateDelayedStatus;

136

137 void newBalanceUpdate()

138 {

139 static uint32_t lastMillis;

140 uint32_t ms = millis();

141

142 if ((uint32_t)(ms - lastMillis) < UPDATE_TIME_MS) { return; }

143 balanceUpdateDelayedStatus = ms - lastMillis > UPDATE_TIME_MS + 1;

144 lastMillis = ms;

145

146 // call functions to integrate encoders and gyros

147 balanceUpdateSensors();

148

149 if (imu.a.x < 0)

150 {

151 lyingDown();

152 isBalancingStatus = false;

153 }

154 else

155 {

156 isBalancingStatus = true;

157 }

158 }

159

160

161 void loop()

162 {

163 uint32_t cur_time = 0;

164 static uint32_t prev_print_time = 0; // this variable is to control how often we print on the serial monitor

165 static float angle_rad; // this is the angle in radians

166 static float angle_rad_accum = 0; // this is the accumulated angle in radians

167 static float error_ = 0; // this is the accumulated velocity error in m/s

168 static float error_left_accum = 0; // this is the accumulated velocity error in m/s

169 static float error_right_accum = 0; // this is the accumulated velocity error in m/s

170

171 cur_time = millis(); // get the current time in miliseconds

172

173

174

175 newBalanceUpdate(); // run the sensor updates. this function checks if it has been 10 ms since the previous

176

177 if(angle > 3000 || angle < -3000) // If angle is not within +- 3 degrees, reset counter that waits for start

178 {

179 start_counter = 0;

180 }

181

11

182 bool shouldPrint = cur_time - prev_print_time > 105;

183 if(shouldPrint) // do the printing every 105 ms. Don’t want to do it for an integer multiple of 10ms to not hog the processor

184 {

185 Serial.print(angle_rad);

186 Serial.print("\t");

187 Serial.print(angle_rad_accum);

188 Serial.print("\t");

189 Serial.print(leftMotorPWM);

190 Serial.print("\t");

191 Serial.print(rightMotorPWM);

192 Serial.print("\t");

193 Serial.print(vL);

194 Serial.print("\t");

195 Serial.print(vR);

196 Serial.print("\t");

197 Serial.print(totalDistanceLeft);

198 Serial.print("\t");

199 Serial.println(totalDistanceRight);

200

201 prev_print_time = cur_time;

202 /* Uncomment this and comment the above if doing wireless

203 Serial1.print(angle_rad);

204 Serial1.print("\t");

205 Serial1.print(angle_rad_accum);

206 Serial1.print("\t");

207 Serial1.print(PWM_left);

208 Serial1.print("\t");

209 Serial1.print(PWM_right);

210 Serial1.print("\t");

211 Serial1.print(vL);

212 Serial1.print("\t");

213 Serial1.println(vR);

214 */

215 }

216

217 float delta_t = (cur_time - prev_time)/1000.0;

218

219 // handle the case where this is the first time through the loop

220 if (prev_time == 0) {

221 delta_t = 0.01;

222 }

223

224 // every UPDATE_TIME_MS, check if angle is within +- 3 degrees and we haven’t set the start flag yet

225 if(cur_time - prev_time > UPDATE_TIME_MS && angle > -3000 && angle < 3000 && !armed_flag)

226 {

227 // increment the start counter

228 start_counter++;

229 // If the start counter is greater than 30, this means that the angle has been within +- 3 degrees for 0.3 seconds, then set the start_flag

230 if(start_counter > 30)

231 {

232 armed_flag = 1;

233 buzzer.playFrequency(DIV_BY_10 | 445, 1000, 15);

234 }

235 }

236

237 // angle is in millidegrees, convert it to radians and subtract the desired theta

238 angle_rad = ((float)angle)/1000/180*3.14159;

239

240 // only start when the angle falls outside of the 3.0 degree band around 0. This allows you to let go of the

12

241 // robot before it starts balancing

242 if(cur_time - prev_time > UPDATE_TIME_MS && (angle < -3000 || angle > 3000) && armed_flag)

243 {

244 start_flag = 1;

245 armed_flag = 0;

246 angle_rad_accum = 0.0;

247 fLaccum = 0.0;

248 fRaccum = 0.0;

249 eLaccum = 0.0;

250 eRaccum = 0.0;

251 vLoutaccum = 0.0;

252 vRoutaccum = 0.0;

253 }

254

255 // every UPDATE_TIME_MS, if the start_flag has been set, do the balancing

256 if(cur_time - prev_time > UPDATE_TIME_MS && start_flag)

257 {

258 // set the previous time to the current time for the next run through the loop

259 prev_time = cur_time;

260

261 // speedLeft and speedRight are just the change in the encoder readings

262 // wee need to do some math to get them into m/s

263 vL = METERS_PER_CLICK*speedLeft/delta_t;

264 vR = METERS_PER_CLICK*speedRight/delta_t;

265

266 totalDistanceLeft = METERS_PER_CLICK*distanceLeft;

267 totalDistanceRight = METERS_PER_CLICK*distanceRight;

268 angle_rad_accum += angle_rad*delta_t;

269

270 updatePWMs(totalDistanceLeft, totalDistanceRight, vL, vR, angle_rad, angle_rad_accum, delta_t);

271

272 // if the robot is more than 45 degrees, shut down the motor

273 if(start_flag && fabs(angle_rad) > FORTY_FIVE_DEGREES_IN_RADIANS)

274 {

275 // reset the accumulated errors here

276 start_flag = 0; /// wait for restart

277 prev_time = 0;

278 motors.setSpeeds(0, 0);

279 } else if(start_flag) {

280 motors.setSpeeds((int)leftMotorPWM, (int)rightMotorPWM);

281 }

282 }

283

284 // kill switch

285 if (buttonA.getSingleDebouncedPress())

286 {

287 motors.setSpeeds(0,0);

288 while(!buttonA.getSingleDebouncedPress());

289 }

290 }

A.2 Running (Sprint) Code

1 // This code should help you get started with your balancing robot.

2 // The code performs the following steps

3 // Calibration phase:

4 // In this phase the robot should be stationary lying on the ground.

5 // The code will record the gyro data for a couple of seconds to zero

6 // out any gyro drift.

13

7 //

8 // The robot has a hardcoded angle offset between the lying down and the

9 // standing up configuration. This offset can be modified in Balance.cpp around the lines below:

10 //

11 // // this is based on coarse measurement of what I think the angle would be resting on the flat surface.

12 // // this corresponds to 94.8 degrees

13 // angle = 94827-6000;

14 //

15 // Waiting phase:

16 // The robot will now start to integrate the gyro over time to estimate

17 // the angle. Once the angle gets within +/- 3 degrees of vertical,

18 // we transition into the armed phase. A buzzer will sound to indicate

19 // this transition.

20 //

21 // Armed phase:

22 // The robot is ready to go, however, it will not start executing its control

23 // loop until the angle leaves the region of [-3 degrees, 3 degrees]. This

24 // allows you to let go of your robot, and it won’t start moving until it’s started

25 // to fall just a little bit. Once it leaves the region around vertical, it enters

26 // the controlled phase.

27 //

28 // Controlled phase:

29 // Here you can implement your control logic to do your balancing (or any of the

30 // other Olympic events.

31

32

33 #include <Balboa32U4.h>

34 #include <Wire.h>

35 #include <LSM6.h>

36 #include "Balance.h"

37

38 #define METERS_PER_CLICK 3.141592*80.0*(1/1000.0)/12.0/(162.5)

39 #define MOTOR_MAX 300

40 #define MAX_SPEED 0.75 // m/s

41 #define FORTY_FIVE_DEGREES_IN_RADIANS 0.78

42

43 extern int32_t angle_accum;

44 extern int32_t speedLeft;

45 extern int32_t driveLeft;

46 extern int32_t distanceRight;

47 extern int32_t speedRight;

48 extern int32_t distanceLeft;

49 extern int32_t distanceRight;

50

51 float vL, vR, totalDistanceLeft, totalDistanceRight;

52 float leftMotorPWM = 0;

53 float rightMotorPWM = 0;

54 float imu_ax_average = 0.0;

55 float alpha_imu_ax = 0.1;

56

57 void balanceDoDriveTicks();

58

59 extern int32_t displacement;

60 int32_t prev_displacement = 0;

61

62 LSM6 imu;

63 Balboa32U4Motors motors;

64 Balboa32U4Encoders encoders;

65 Balboa32U4Buzzer buzzer;

14

66 Balboa32U4ButtonA buttonA;

67

68 // Instantiate values for all terms that we want to accumulate over

69 // time (i.e. collect the integrals of)

70 float fLaccum = 0.0;

71 float fRaccum = 0.0;

72 float eLaccum = 0.0;

73 float eRaccum = 0.0;

74 float vLoutaccum = 0.0;

75 float vRoutaccum = 0.0;

76

77 // Instantiate our control parameters

78 float ki = -88;

79 float kp = -100;

80 float ji = 70;

81 float jp = 8;

82 float qi = -.3;

83 float theta_des = 0;

84 float md = 0.005;

85 float dDesired = 0;

86

87 void updatePWMs(float realDistanceLeft, float realDistanceRight, float vL, float vR, float angleRad, float angleRadAccum, float dt) {

88

89 // Define local total distance variables that look at the difference between the

90 // system total distance (realDistanceL/R) and the accumulated distance that we

91 // don’t care about anymore (vL/Routaccum)

92 float totalDistanceLeft = realDistanceLeft - vLoutaccum;

93 float totalDistanceRight = realDistanceRight - vRoutaccum;

94

95 // Calculate a theta_des value that is some proportion of how far

96 // we currently are from the target distance

97 theta_des = md * (dDesired - (totalDistanceLeft + totalDistanceRight) / 2);

98

99 // If theta_des is less than zero, we’ve overshot the target distance

100 // and so can increment the step we want to be at, dDesired

101 if (theta_des <= 0) {

102 dDesired = 0.1;

103

104 // Also we want to increment our voutaccum terms so that the position

105 // check term doesn’t try to pull us backwards

106 vLoutaccum = totalDistanceLeft;

107 vRoutaccum = totalDistanceLeft;

108

109 // Next we want to reset any variables that are integrals that are

110 // needed in order to move forward to the next waypoint

111 eLaccum = 0.0;

112 eRaccum = 0.0;

113 fLaccum = 0.0;

114 fRaccum = 0.0;

115

116 // And finally we re-calculate theta_des with these new values in mind

117 theta_des = md * ((totalDistanceLeft + totalDistanceRight) / 2 - dDesired);

118 }

119

120

121 // Calculate angle error in terms of theta_des, angleRad, and the average of the total distances

122 float eL = theta_des - angleRad + (qi * (totalDistanceLeft + totalDistanceRight) / 2);

123 // Calculate the desired velocity for the left wheel

124 float vtargetL = kp * eL + ki * eLaccum;

15

125 // Calculate the error between desired and actual velocities

126 float fL = vtargetL - vL;

127

128 // Repeat the aforementioned steps for the right wheel

129 float eR = eL;//theta_des-angleRad+(qi*(totalDistanceLeft+totalDistanceRight)/2);

130 float vtargetR = kp * eR + ki * eRaccum;

131 float fR = vtargetR - vR;

132

133 // Add to the integrals of all terms we want to accumulate over time by adding the

134 // value of each term times the duration of the current time step

135 fLaccum += fL * dt;

136 eLaccum += eL * dt;

137 vLoutaccum += vL * dt;

138 fRaccum += fR * dt;

139 eRaccum += eR * dt;

140 vRoutaccum += vR * dt;

141

142 // Calculate the final PWM values for each wheel

143 leftMotorPWM = jp * fL + ji * fLaccum + 10;

144 rightMotorPWM = jp * fR + ji * fRaccum;// + 12; //leftMotorPWM;;

145

146 // Perform a check to verify that we’re not asking for a PWM

147 // outside the -300 to +300 range that the robto can handle

148 if (leftMotorPWM < -300) {

149 leftMotorPWM = -300;

150 }

151 else if (leftMotorPWM > 300) {

152 leftMotorPWM = 300;

153 }

154 if (rightMotorPWM < -300) {

155 rightMotorPWM = -300;

156 }

157 else if (rightMotorPWM > 300) {

158 rightMotorPWM = 300;

159 }

160 }

161

162 uint32_t prev_time;

163

164 void setup()

165 {

166 Wire.begin();

167

168 Serial1.begin(9600);

169 Serial1.begin(9600);

170

171 prev_time = 0;

172 ledYellow(0);

173 ledRed(1);

174 balanceSetup();

175 ledRed(0);

176 ledGreen(0);

177 ledYellow(0);

178 }

179

180 extern int16_t angle_prev;

181 int16_t start_flag = 0;

182 int16_t armed_flag = 0;

183 int16_t start_counter = 0;

16

184 void lyingDown();

185 extern bool isBalancingStatus;

186 extern bool balanceUpdateDelayedStatus;

187

188 void newBalanceUpdate()

189 {

190 static uint32_t lastMillis;

191 uint32_t ms = millis();

192

193 if ((uint32_t)(ms - lastMillis) < UPDATE_TIME_MS) {

194 return;

195 }

196 balanceUpdateDelayedStatus = ms - lastMillis > UPDATE_TIME_MS + 1;

197 lastMillis = ms;

198

199 // call functions to integrate encoders and gyros

200 balanceUpdateSensors();

201 imu_ax_average = alpha_imu_ax * imu.a.x + (1 - alpha_imu_ax) * imu_ax_average;

202 if (imu_ax_average < 0)

203 {

204 lyingDown();

205 isBalancingStatus = false;

206 }

207 else

208 {

209 isBalancingStatus = true;

210 }

211 }

212

213

214

215 void loop()

216 {

217 uint32_t cur_time = 0;

218 static uint32_t prev_print_time = 0; // this variable is to control how often we print on the serial monitor

219 static float angle_rad; // this is the angle in radians

220 static float angle_rad_accum = 0; // this is the accumulated angle in radians

221 static float error_ = 0; // this is the accumulated velocity error in m/s

222 static float error_left_accum = 0; // this is the accumulated velocity error in m/s

223 static float error_right_accum = 0; // this is the accumulated velocity error in m/s

224

225 cur_time = millis(); // get the current time in miliseconds

226

227

228

229 newBalanceUpdate(); // run the sensor updates. this function checks if it has been 10 ms since the previous

230

231 if (angle > 3000 || angle < -3000) // If angle is not within +- 3 degrees, reset counter that waits for start

232 {

233 start_counter = 0;

234 }

235

236 bool shouldPrint = cur_time - prev_print_time > 105;

237 if (shouldPrint) // do the printing every 105 ms. Don’t want to do it for an integer multiple of 10ms to not hog the processor

238 {

239 Serial1.print(angle_rad);

240 Serial1.print("\t");

241 Serial1.print(angle_rad_accum);

242 Serial1.print("\t");

17

243 Serial1.print(leftMotorPWM);

244 Serial1.print("\t");

245 Serial1.print(rightMotorPWM);

246 Serial1.print("\t");

247 Serial1.print(vL);

248 Serial1.print("\t");

249 Serial1.print(vR);

250 Serial1.print("\t");

251 Serial1.print(totalDistanceLeft);

252 Serial1.print("\t");

253 Serial1.print(totalDistanceRight);

254 Serial1.print("\t");

255 Serial1.println(dDesired);

256

257 prev_print_time = cur_time;

258 /* Uncomment this and comment the above if doing wireless

259 Serial1.print(angle_rad);

260 Serial1.print("\t");

261 Serial1.print(angle_rad_accum);

262 Serial1.print("\t");

263 Serial1.print(PWM_left);

264 Serial1.print("\t");

265 Serial1.print(PWM_right);

266 Serial1.print("\t");

267 Serial1.print(vL);

268 Serial1.print("\t");

269 Serial1.println(vR);

270 */

271 }

272

273 float delta_t = (cur_time - prev_time) / 1000.0;

274

275 // handle the case where this is the first time through the loop

276 if (prev_time == 0) {

277 delta_t = 0.01;

278 }

279

280 // every UPDATE_TIME_MS, check if angle is within +- 3 degrees and we haven’t set the start flag yet

281 if (cur_time - prev_time > UPDATE_TIME_MS && angle > -3000 && angle < 3000 && !armed_flag)

282 {

283 // increment the start counter

284 start_counter++;

285 // If the start counter is greater than 30, this means that the angle has been within +- 3 degrees for 0.3 seconds, then set the start_flag

286 if (start_counter > 30)

287 {

288 armed_flag = 1;

289 buzzer.playFrequency(DIV_BY_10 | 445, 1000, 15);

290 }

291 }

292

293 // angle is in millidegrees, convert it to radians and subtract the desired theta

294 angle_rad = ((float)angle) / 1000 / 180 * 3.14159;

295

296 // only start when the angle falls outside of the 3.0 degree band around 0. This allows you to let go of the

297 // robot before it starts balancing

298 if (cur_time - prev_time > UPDATE_TIME_MS && (angle < -3000 || angle > 3000) && armed_flag)

299 {

300 start_flag = 1;

301 armed_flag = 0;

18

302 angle_rad_accum = 0.0;

303 fLaccum = 0.0;

304 fRaccum = 0.0;

305 eLaccum = 0.0;

306 eRaccum = 0.0;

307 vLoutaccum = 0.0;

308 vRoutaccum = 0.0;

309 theta_des = 0.0;

310 dDesired = 0.0;

311 }

312

313 // every UPDATE_TIME_MS, if the start_flag has been set, do the balancing

314 if (cur_time - prev_time > UPDATE_TIME_MS && start_flag)

315 {

316 // set the previous time to the current time for the next run through the loop

317 prev_time = cur_time;

318

319 // speedLeft and speedRight are just the change in the encoder readings

320 // wee need to do some math to get them into m/s

321 vL = METERS_PER_CLICK * speedLeft / delta_t;

322 vR = METERS_PER_CLICK * speedRight / delta_t;

323

324 totalDistanceLeft = METERS_PER_CLICK * distanceLeft;

325 totalDistanceRight = METERS_PER_CLICK * distanceRight;

326 angle_rad_accum += angle_rad * delta_t;

327

328 updatePWMs(totalDistanceLeft, totalDistanceRight, vL, vR, angle_rad, angle_rad_accum, delta_t);

329

330 // if the robot is more than 45 degrees, shut down the motor

331 if (start_flag && fabs(angle_rad) > FORTY_FIVE_DEGREES_IN_RADIANS)

332 {

333 // reset the accumulated errors here

334 start_flag = 0; /// wait for restart

335 prev_time = 0;

336 motors.setSpeeds(0, 0);

337 } else if (start_flag) {

338 motors.setSpeeds((int)leftMotorPWM, (int)rightMotorPWM);

339 }

340 }

341

342 // kill switch

343 if (buttonA.getSingleDebouncedPress())

344 {

345 motors.setSpeeds(0, 0);

346 while (!buttonA.getSingleDebouncedPress());

347 }

348 }

19

	Athlete Demographics
	Athlete Performance Information
	Training Session Description
	Results Time Discussion
	Appendix A
	Standing (Survior) Code
	Running (Sprint) Code

