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Abstract

There is a thought experiment that compares the probability of life originating by random chance to
the probability of a dictionary being printed in the explosion of a printing shop; this thought experiment
has not been formally analyzed. This paper presents a highly simplified abstraction of the thought
experiment and calculates the probability for the likelihood that an explosion of a sphere of ink results in
a spray pattern that prints a 1989 Merriam-Webster English dictionary. The model presented consists of
a sphere of ink exploding within a spherical shell composed of pieces of printing paper. The ink sphere is
modeled as a composite of rectangular pyramid sectors that expand outward until their footprint perfectly
overlaps a target piece of paper. Each sector is modeled as a stack of discrete layers of ink droplets,
allowing the ink droplets within each sector to be quantified by a three-dimensional Riemann sum. The
possible arrangements of these droplets are modeled by combinations and permutations that require the
evaluation of enormous factorials to solve (e.g., 5,025,780!). These factorials are too large for a computer
to evaluate by multiplication—or even Sterling’s Approximation—due to limitations in compute time
and decimal precision. As a result, an algorithm for using floating point numbers to conduct large
combinatorial approximations in logarithmic space is derived and presented. The computed likelihood of
a dictionary being printed within this model is ≈ 1.30 × 10−817,692,555, or, in a more familiar form, ≈ 1
in 7.68 × 10817,692,554.

1 Background and Assumed Model

There is a thought experiment that compares the probability of life originating by random chance to the
probability of a dictionary being printed in the explosion of a printing shop. It is unclear who first posed
this thought experiment. Academic analysis has been given to the probability of life as we know it arising
[1][2][3]. Academic analysis has also been given to determine the probability of extremely low-likelihood
events, such as the probability of a person quantum tunneling through a wall, the probability of infinite
monkeys with typewriters producing the complete works of Shakespeare, or the probability of a fully intact
brain appearing out of quantum fluctuations in the vacuum of space [4][5][6][7]. Academic literature studying
the thought experiment of an explosion printing a dictionary, however, is not readily available. Although
difficult to model the entire scenario of a print factory exploding, this paper explores a highly abstracted
and idealized model with the purpose of providing an entry point for future academic exploration.

The model used in this paper consists of a sphere of ink exploding within a spherical shell comprised of
pieces of printing paper; the distribution of ink particles is modeled by sectors of the sphere that expand
outwards, eventually striking the walls of the paper shell. A diagram of this model is shown in Figure 1.
In order to analyze this model mathematically, many simplifications must be made, including the following
primary assumptions:

1. The ink sphere contains exactly the amount of ink necessary to print a single dictionary.

2. The roughly-spherical paper shell is comprised of the number of rectangular pieces of paper necessary
to print a single dictionary.

3. The pieces of paper comprising the shell are at fixed locations in space.

4. All pages of the model dictionary contain the average number of pixels per page of a Merriam-Webster
Webster’s Dictionary of English Usage.

5. The dictionary is printed at a standard print resolution of 300 dots per inch (dpi).



6. At the instant of explosion, the ink sphere atomizes into identical droplets, each with the diameter to
produce a 300 dpi pixel.

7. The sphere expands uniformly, resulting in an equal number of ink droplets per sector.

8. The sphere is analyzed as a set of identical, expanding sectors, with the number of sectors being equal
to the number of pages in the dictionary and each containing enough ink to print one page.

9. Each expanded sector’s footprint encloses a single piece of paper.

10. Each sector is a rectangular pyramid comprised of a stack of flat layers of ink droplets.

11. Ink droplets within any single layer are randomly arranged within the target footprint, but no two
droplets in a single layer can land in the same location.

12. The order of the printed pages does not matter.

Figure 1: The model this paper uses is a sphere of ink comprised of sectors that are approximated by
rectangular pyramids. When the explosion occurs, these sectors expand outward until they strike a roughly
spherical shell comprised of pieces of paper. The footprint of each pyramid encloses a single piece of paper,
ensuring the ink from that sector lands somewhere on that page.

The realistic nature of these assumptions is questionable but acceptable within reason for a highly ap-
proximated model. Although it is not possible to create a perfectly closed shell (polyhedron) with identical,
rectangular faces, prior work in hemisphere partitioning has shown that it is possible to partition a hemisphere
into equal areas with constrained aspect ratios that well approximate same-size rectangles [8]. Although the
likelihood of an explosion atomizing ink droplets instantly and identically is low, the concept of flash boiling
for ideal spray generation has been researched and has a potential application in the automotive engine
industry for the purpose of optimizing fuel injection [9][10]. Although dot-matrix printers can produce res-
olutions as low as 60 dpi, such printers are no longer commonly used, so a resolution of 300 dpi (a typical
medium to high quality resolution) is used by the model [11][12].

Although this model does not analyze an entire print factory, it does allow for quantitative analysis of the
probability that a random explosion of ink particles within an idealized environment results in a Merriam-
Webster English dictionary; it thus serves as an entry point for further academic analysis and discussion of
this thought experiment.

2 Numbers of Pixels

The dictionary used in this model is the 1989 edition of the Merriam-Webster Webster’s Dictionary of English
Usage. To determine the average number of pixels per page (as required by assumption 4) 30 pages were
selected at random from the 973 pages that make up the main body of this edition (ignoring brief preface and



suffix sections, such as the edition notes and bibliography). These 30 pages were extracted from a portable
document format (PDF) file of the dictionary, converted into black and white bitmaps, and had their pixels
counted by a Python script. Of 149,261,354 total pixels counted, 19,476,801 were black, yielding an average
of 13.0488% black pixels per page.

The dimensions of a page of the 1989 Merriam-Webster English dictionary are approximately 6.15× 9.08
inches. At a resolution of 3002 dots per square inch, each page is comprised of 5,025,780 pixels. Taking
13.05% of these pixels yields 655,803 black pixels (resulting in 638,096,319 total ink droplets necessary to
print the entire dictionary). The average number of pixels per page will be denoted hereafter as ΣN =
655,803 droplets.

3 Ink Droplet Physical Properties

By primary assumption 5 the dictionary is printed at a resolution of 300 dpi. By primary assumption 6 the
ink sphere atomizes into identical droplets, each capable of yielding a pixel that measures 1

300 of an inch, or
84.6 microns. Prior research in the microscopic topography of ink on paper has found that a typical layer
of ink on a paper is approximately 2.5 microns deep [13]. Considering each pixel to be a cylinder with a
diameter of 84.6 microns and a thickness of 2.5 micrometers, we can calculate the volume of ink in each pixel.
This volume, in turn, equals the volume of ink in a spherical droplet of the ink spray, Vd = 14 075.21 micron3,
which will have a diameter of Dd = 29.96 microns. The total volume of ink necessary to print a dictionary
is therefore Vd × ΣN = 8.98 cm3. Before being exploded, this volume of ink occupies a sphere of radius
r0 = 1.29 cm.

4 Geometry of an Expanding Sector

A sector of the initial ink sphere is approximated by a rectangular pyramid that, by assumption 9, has an
expanded footprint that covers one page of the dictionary (the entire initial ink sphere is comprised of 973
pyramids, one for each page of the dictionary). This is similar to the analysis of the footprint of a sensor
with a rectangular field of vision, see [14]. By assumption 10, the rectangular pyramid is a composite of
layers of ink particles, each with a distinct thickness of Dd. The pyramid’s volume can thus be considered
as the sum of the volumes of thin boxes, each of which has a rectangular base and a height of Dd; this is
a volumetric Riemann sum similar to the one used to derive the formula for the volume of a pyramid for
students of calculus [15][16]. A diagram of this geometry and relevant dimensions is shown in Figure 2.

The height of the expanded pyramid, or the distance from the center of the initial ink sphere to the center

of the target piece of paper, is h0 =
√
r2
0 − (w0

2 )2, a function of the radius of the spherical paper shell, r0,

and the width of the target piece of paper, w0. When taking a Riemann sum of the pyramid’s volume along
the h axis, the volume component at a particular step, n, is a rectangular prism with length ln, width wn,
and thickness ∆h (which is equal to the diameter of a single droplet of ink, Dd). The values of ln and wn

can be found with similarity of triangles by multiplying l0 and w0 each by the ratio of the altitude of the
pyramid at that step, hn, to the expanded altitude, h0. The Riemann sum approximating the total volume
of the pyramid, ΣV , is the sum of all volume components:

ΣV =

m∑
n=0

w0 × l0 ×∆h3 × n2

r2
0 − (w0

2 )2
(1)

The limit of the sum, m, is the integer number of layers in the pyramid rounded to the nearest integer:
m = h0

∆h . Assumption 10 models the ink in a sector as a series of layers comprised of ink droplets, and
assumptions 1, 4, 7, and 8 establish that each sector contains exactly the number of droplets necessary to
print a single page. The number of droplets in a particular layer, N(n), is therefore given by

N(n) =
V (n)

ΣV
ΣN (2)



Figure 2: Each pyramidal sector is represented as a composition of slices, with each slice being the thickness
of an ink droplet and containing a discrete number of ink particles. Left is a sector diagram with a discrete
slice shown, and right is a top-view of the same geometry. The labeled values are used in the following set
of calculations. w0 and l0 are the dimensions of a page, 6.15 and 9.08 inches (156,210 and 230,632 microns),
respectively, and ∆h = Dd.

where V (n) is the volume of that layer of the sector,

V (n) =
w0 × l0 ×∆h3 × n2

r2
0 − (w0

2 )2
(3)

The parameters for evaluation of these expressions (applied to the initial, un-exploded ink sphere) are the
following:

w0 = 15.62 cm

l0 = 23.06 cm

∆h = 29.96 microns

n = 430 layers

r0 = 1.29 cm

4.1 Computational Evaluation of N(n), with Corrections

Equations 2 and 3 can be used to generate a set of values that denote the number of ink particles at each
layer of the sector, {N(0), N(1), N(2), ...N(m)}. This set was calculated computationally in Python 3.8.5
and resulted in 655,795 total droplets across all layers. ΣN = 649,226 droplets, however, meaning the
Riemann sum calculated an extraneous 6,569 droplets (an error of +1.01%). To correct for this error, each
layer had subtracted from it a portion of these extraneous droplets proportional to the fraction of the total
number of sector droplets contained within that layer. This resulted in the subtraction of 6,566 extraneous
droplets and reduced the error in the total number of droplets to below +0.0005%.

5 Arrangements Within a Single Layer

By assumption 11, the ink droplets are randomly distributed throughout the target area; because all ink
droplets are identical, the number of arrangements for droplets in a single layer can be modeled as a simple
combination,

C(n) =

(
L

N(n)

)
(4)



where L is the total number of locations that an ink droplet can land, N(n) is the number of droplets in a
given layer, and C(n) is the number of possible arrangements for the particles in that layer. In section 2, it
was determined that a resolution of 3002 dots per square inch yields 5,025,780 total pixels per page (black or
white), thus L = 5,025,780 locations. This function can be used to generate a set of values that denote the
number of arrangements for each layer of the sector, {C(0), C(1), C(2), ...C(m)}. Also by assumption 11,
although no two ink particles in a single layer can land in the same location, ink particles in subsequent layers
can. Thus, the product of all items within the set of C values is the total number of possible arrangements
for all ink particles in an entire sector. This quantity (hereafter referred to as Γ) can be represented in
product notation as

Γ =

m∏
n=0

(
L

N(n)

)
(5)

where m continues to represent the number of layers in the sector.

6 Accounting for Multiple Correct Arrangements

Let us consider a page to be “successfully printed” when a particular subset of ΣN cells are filled with ink.
Although there is exactly one subset of cells that results in a correctly printed page, those ΣN droplets of
ink may be arranged in any manner within those cells. This repetition is illustrated in Figure 3 with a simple
example of five ink droplets filling a single configuration of five target cells. These droplets are arranged
into two layers, with three droplets in A and two in B. Two possible arrangements of these five droplets
are shown in Figure 3. Both of the arrangements shown generate a “correctly printed” page despite being
arranged differently. The total number of correct arrangements of these five particles (accounting for the
fact that two particles within the same layer are identical) is described mathematically as a permutation
with repetition, 5!

3!×2! . This principle is applied to the sector as a whole by the following permutation with
repetition:

ΣN !
m∏

n=0

N(n)!

(6)

Figure 3: A simplified example of printing the letter “l” where five ink droplets are arranged into two layers,
A and B. To successfully “print” this letter, all five target cells must be filled. In both the left and right
scenarios all five cells are successfully filled, but both solutions are counted even though they both produce
the same (single) outcome. To determine the number of correct arrangements, a permutation with repetition
must be employed.



The actual probability of a page being printed is the ratio between the number of correct arrangements
and the total number of arrangements. Γ provides the total number of arrangements; the number of correct
arrangements is given by expression 6. The probability ratio, Λ is thereby expressed as

Λ =
ΣN !

Γ

m∏
n=0

N(n)!

(7)

7 Computing Enormous Factorials

In order to evaluate Λ, factorials of L, ΣN, and various large N(n) values must be computed. The largest
factorial required is L!, which requires the computation of 5,025,780!. Exact computation of large numbers
can take enormous amounts of computing time; a study of the number of legal moves in games of Go required
8000 central processing unit (CPU) hours to generate an exact number with an order of magnitude of 136
(for reference, 5,025,780! has an order of magnitude of 107) [17]. One commonly used function for calculating
enormous factorials is Sterling’s Approximation [18][19],

L! ∼
√

2πL(
L

e
)L (8)

Although less computationally intensive than repeated multiplication, Sterling’s Approximation for L!
requires the evaluation of (L

e )L, an operation that still requires a large amount of computational time.
Furthermore, the resulting number (which also has an order of magnitude of 107) is too large to be stored
by a conventional data type. Python 3.8.5 floating-point numbers are almost always mapped to IEEE-
754 “double precision” [20]. The maximum value that Python can represent has an order of magnitude of
308, much too small to handle (L

e )L, and so Sterling’s Approximation will not suffice for this computation.
We can, however, effectively utilize Python’s 17-digit floating point precision by exploiting the fact that
multiplication in decimal space is equivalent to addition in logarithmic space. Thus,

L! =

L−1∏
n=0

(L− n) (9)

log10 L! =

L−1∑
n=0

log10(L− n) (10)

L = 5, 025, 780, so its logarithmic representation is log10(5, 025, 780) ≈ 6.70, which is a number easily
handled by a floating point number. When evaluated in Python 3.8.5, the sum in equation 10 evaluates to
the following:

log10 L! ≈ 31, 496, 109.622662853 (11)

∴ L! ≈ 1031,496,109.622662853 (12)

The power of ten in equation 12 can be factored into two terms: 10 raised to the integer portion of the
power and 10 raised to the decimal portion of the power. 10 raised to the decimal portion can be easily
evaluated by a computer, while 10 raised to the integer portion provides an order of magnitude for the
computed decimal. This algorithm is illustrated by factoring the output of equation 12:

L! ≈ 100.622662853 × 1031,496,109 (13)

≈ 4.19× 1031,496,109 (14)

Being that combinations are a function of factorials, this technique for computing large factorials can be
used to create approximations for every factorial necessary to evaluate Λ.



8 The Probability of an Explosion Printing a Dictionary

With this technique for computing large factorials, the effective probability ratio, Λef , that a single page of
the dictionary is printed can be directly evaluated as expressed in equation 7. Thus,

Λef ≈ 1.78× 10−840,386

However, being that a page can be printed either right side up or upside down and still be a recognizable
page (and arbitrary rotations of the printed sphere are ignored par assumption 3), the actual probability
ratio is twice Λef , hence,

Λ ≈ 3.56× 10−840,386

This ratio can be translated into a more familiar form by taking its reciprocal; thus, the chance of a single
page of the dictionary being successfully printed is 1 in 2.81 × 10840,385. Raising Λ to the power of 973
(the total number of pages in the dictionary) will provide the probability that all pages are successfully
printed. However, this power includes all possible arrangements of those pages. By assumption 12, the order
of the printed pages does not matter, so the final probability ratio is given by Λ973 multiplied by the total
number of arrangements of all printed pages. The total number of arrangements of all pages is given by the
permutation 973P973, as 973 positions can hold 973 unique pages. This permutation simplifies to 973!, and
thus the final probability ratio, Ω, that a dictionary is printed is

Ω ≈ 973!× Λ973 (15)

≈ 1.30× 10−817,692,555 (16)

Taking the reciprocal of Ω yields a more familiar form: 1 in 7.68× 10817,692,554.

9 Conclusions

The printing factory explosion thought experiment, up until this point, had not been formally evaluated.
Although the original scenario—that of an explosion in a printing factory—is extremely complex to model
in full, a highly simplified model consisting of an explosion of a single sphere of ink within a static paper
shell can be mathematically modeled and estimated. Within our model, the probability of a dictionary being
printed is found to be 1 in 7.68× 10817,692,554.

This probability can be compared to the probability of certain events described in popular media and
other thought experiments. Students at the University of Leicester performed an investigation into the
likelihood that a person moving at 0.99c could quantum tunnel through a solid wall, finding the likelihood
of such an event to be 10−1028

[4]. On the other hand, the probability of a monkey randomly typing the

complete works of Shakespeare has been estimated at about 10−107.15

[5]. We calculated the probability of

an explosion printing a dictionary under our model to be approximately 10−109

, which is much higher than
the probability of a person quantum tunneling through a solid wall and much lower than the probability of
a monkey randomly typing the entire works of Shakespeare.

We present this as our estimate for the probability of a dictionary being printed in the circumstances of
this model. It is important to note, however, that this does not establish an estimate for the probability of
the entire print factory explosion thought experiment, as the sheer scale of an explosion in a printing factory
introduces factors that could drive the likelihood of a dictionary being printed either up or down from that
of our model. For instance, a print factory could be modeled as a series of many explosions identical to
this one, effectively driving the likelihood up. Furthermore, this model assumes that the ink droplets must
fill a specific arrangement perfectly to produce a dictionary, whereas it is much more likely to produce a
dictionary that has almost all droplets in the correct arrangement, with some out of place; setting thresholds
that accept these imperfect dictionaries would also drive the likelihood up. Conversely, adding complexity
to the atomization of ink droplets or assuming non-uniform ink distribution throughout the spray would
introduce variables that could supply excessive or insufficient ink to particular pages, effectively driving the



likelihood of success down. This model thus serves as an entry point for more complex analyses of the
thought experiment, opening the door for the evaluation of higher-fidelity models that can establish a more
accurate estimate of the likelihood that a dictionary is printed in the explosion of a printing factory.
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